a2 United States Patent

Kulkarni et al.

US009058355B1

US 9,058,355 B1
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SCALABLE, ADAPTABLE, AND
MANAGEABLE SYSTEM FOR MULTIMEDIA
IDENTIFICATION

(71) Applicants: Sunil Suresh Kulkarni, Santa Clara, CA
(US); Jose Pio Pereira, Cupertino, CA
(US); Pradipkumar Dineshbhai
Gajjar, Sunnyvale, CA (US); Shashank
Merchant, Sunnyvale, CA (US);
Prashant Ramanathan, Mountain View,
CA (US); Mihailo M. Stojancic, San
Jose, CA (US)

(72) Inventors: Sunil Suresh Kulkarni, Santa Clara, CA
(US); Jose Pio Pereira, Cupertino, CA
(US); Pradipkumar Dineshbhai
Gajjar, Sunnyvale, CA (US); Shashank
Merchant, Sunnyvale, CA (US);
Prashant Ramanathan, Mountain View,
CA (US); Mihailo M. Stojancic, San
Jose, CA (US)

(73) Assignee: Zeitera, LL.C, Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/151,335

(22) Filed: Jan. 9,2014

Related U.S. Application Data

(62) Division of application No. 13/102,479, filed on May
6, 2011, now Pat. No. 8,655,878.

(60) Provisional application No. 61/331,965, filed on May

(58) Field of Classification Search
CPC ..ccoovvreriennn GO6F 17/30864; GOGF 17/30017,
GOG6F 17/30156
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,552,196 B2* 6/2009 Levietal. ... 709/217

2004/0003132 Al* 1/2004 Stanley etal. 709/316
2004/0133927 Al* 7/2004 Sternbergetal. 7125/136
2005/0021972 Al* 12005 Levietal. 713/176
2009/0164213 Al* 6/2009 Lennington et al. .. 704/231
2010/0177642 Al* 7/2010 Sebastianetal. 370/248

* cited by examiner

Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Law Offices of Peter H.
Priest, PLLC

(57) ABSTRACT

An architecture for a multimedia search system is described.
To perform similarity matching of multimedia query frames
against reference content, reference database comprising of a
cluster index using cluster keys to perform similarity match-
ing and a multimedia index to perform sequence matching is
built. Methods to update and maintain the reference database
that enables addition and removal of the multimedia contents,
including portions of multimedia content, from the reference
database in a running system are described. Hierarchical
multi-level partitioning methods to organize the reference
database are presented. Smart partitioning of the reference
multimedia content according to the nature of the multimedia
content, and according to the popularity among the social
media, that supports scalable fast multimedia identification is

6, 2010. also presented. A caching mechanism for multimedia search
queries in a centralized or in a decentralized distributed sys-
(51) Int.CL tem and a client based local multimedia search system
GOGF 17/30 (2006.01) enabling multimedia tracking are described.
(52) US.CL
CPC ..o, GO6F 17/30424 (2013.01) 20 Claims, 36 Drawing Sheets
o
QUERY USING THE
GENERATE N eaaya ™ CACHE KEYS TO THE
SIGNATURES | 1o [of CACHEREYS | | |REMOTE CENTRALIZED
1620 g SEARCH SYSTEM
— 1524
I
RECENE
RESLLTS
1528
WATCH
END Y F ReGeneD
/) RESULTS?
1526
QUERY USING THE QUERY
RECEIVE SIGNATURES TO THE REMOTE
RESULTS k- | CENTRALIZED SEARCH SYSTEMAND
1532 RECEIVE THE SEARCH RESULTS
1530

U.S. Patent Jun. 16, 2015 Sheet 1 of 36 US 9,058,355 B1

Fig. 1

AN
i
i

US 9,058,355 B1

Sheet 2 of 36

Jun. 16, 2015

U.S. Patent

3svaviva __
JONTHI4TY 80¢
A =
V¢ Old
-
NOILYY3NI9 3SvavLva
T
[L R
VIVAVLIN |
'SAIN ¥ALSNTD |
'STUNLYNDIS | e
/SINIYJHIONIA |
JONTHIATN Z r
N Mg $0Z y0z

1
Y4
ONILNIHdE3IONIS
T
L
|
Sdi7o |
YIAIWILTNIA m = st
m_UZm_w_m_u_m_m/__
|
/" o MNegz
00¢

US 9,058,355 B1

Sheet 3 of 36

Jun. 16, 2015

U.S. Patent

saunleusdis
/iundiasduyy Auanp

vic

gz 'S4

€0~

dunuudiagui4

dijo elpawn|nw
AsanD

oce

&

US 9,058,355 B1

Sheet 4 of 36

Jun. 16, 2015

U.S. Patent

JZ "84
151} 21epipue)
80¢
vEC
yaieas
(A 5 Ayaenuwis
sainleudis
Jwndiasduy Assnp e
ogc—~

aseqelep
CRIIEVETEN

US 9,058,355 B1

Sheet 5 of 36

Jun. 16, 2015

U.S. Patent

az '8y

sdi)p doy jo 1517

vwe~t
N
sdijd
e EIpaWININ
do|
35t} @iepipue)
vee

ove

US 9,058,355 B1

Sheet 6 of 36

Jun. 16, 2015

U.S. Patent

3z ‘314
sdijp
Blpawiy|nw
puno4
vSe

wom)_\lj

uolle|alio) O

¢S 1+ @._Du.mcm_m \/j’

e

aseqelep
CRIIEIETEN

saJnleusdis
f1uladaaguly Alanp

sdijo doy Jo 1517
vve

0S¢

U.S. Patent Jun. 16, 2015 Sheet 7 of 36 US 9,058,355 B1

2000
/

RECORD ARRAY

//2004
RECORD ARRAY

SIGNATURE
| 2006

SIGNATURE

27,
v ;? .
% 9
S é
O < VZ

¥

T

US 9,058,355 B1

Sheet 8 of 36

Jun. 16, 2015

U.S. Patent

0502 0z 9¢ 9Old
QI VIGINILTINI
HO4 AVHYY

i Q¥003d FHNLIVYNOIS

502 0902
arviaaninn “

“ HO4 AVHHY
i 040334 JANLYNDIS

160ZEZOROANNNNNY

\ dIVIQIWILTNW A9 d3ZINVOHO F1avL
050¢ HSVH X3ANI J4NLYNOIS VIAIWILTNIA

US 9,058,355 B1

Sheet 9 of 36

Jun. 16, 2015

U.S. Patent

et]
9zg
WHLIMO9TY LNIHdYIONI4 WOHH ATLOTHI4 QINIVLE0 38 NYD LI
¥0
(V€ "914 Nl GINIVIdX3 SV Q3LV4aNID 38 NvD 11)
AT HALSNTD TLVIAIWHILNI
1 1
VZe 743
o VLYQVLIW STUNLYNOIS INIYJHIONIA TYNOISNIWIQILTNIN
0Z¢
v0¢ AR
e ——
waen AL L -
N m\ww.%m%.&m (40X) 924X (4OX) G2bX |
L T~
m.---.w.w& LZVX_ 9TUX_ STIX |
] I T O [o [v [v [o |
b o \ o o 4
/ 26t
00¢ INIYdYIONIA

U.S. Patent Jun. 16, 2015 Sheet 10 of 36 US 9,058,355 B1

340

START
READ
SIGNATURE(S)
344

ARE
CLUSTER KEYS
FOUND?
346

PASS TO THE GENERATE
CLUSTERIVIDEO CLUSTERKEYS
INDEX BULDING ==

STATE
350 PASS TO THE
CLUSTER/VIDEO
INDEX BUILDING
STATE
352

FIG. 3C

U.S. Patent Jun. 16, 2015 Sheet 11 of 36 US 9,058,355 B1

400

\

Key 1 4
4 Metadata 404
403 ———+— Key2 >
Key Video 1-1FP 1 Signature of
Video 1-FP 2 411 muliimedia 1 in
this cluster
Video 1 - FP N-1
Signature of
405 — Keyk Video 2 EPs 412 multimedia 2 in this

cluster
Signature of

Video1-FPN _L 414 myltimedia 1 again
Empty
402 416
Empty
Cluster Index }
408
Metadata 406

' Signature of
Video 1 -FP T multimedia 1 in
Video 1 - FP 2 other cluster
Video 2 - FP 1 Signatures of

other

Multimedia 3 FPs | multimedias in

this cluster
Multimedia 4 FP 1
Empty
Empty

410
Fig 4A

U.S. Patent Jun. 16, 2015 Sheet 12 of 36 US 9,058,355 B1
CLUSTER| |CLUSTER CLUSTER
INDEX1 | | INDEX2 | [INDEXN

22

424

CLUSTER INDEX DATABASE

426

FIG. 4B

440

/

READ SIGNATURE(S)
AND CLUSTER KEYS
444

v

CREATE CLUSTER INDEX ARRAY.
CALCULATE NUMBER OF SIGNATURES
FALLING IN EACH CLUSTER.

CREATE ARRAYS TO HOLD SIGNATURES FOR EACH
CLUSTER KEY BY OBTAINING LARGE ENOUGH
ARRAY TO STORE ALL CLUSTER SIGNATURES.
446

3
STORE EACH SIGNATURE

IN APPROPRIATE ARRAY POINTED
TO THE CLUSTER KEY.
448

END

FIG. 4C

U.S. Patent Jun. 16, 2015 Sheet 13 of 36 US 9,058,355 B1
MULTIMEDIA
SIGNATURE INDEX
503 | MULTIMEDIA 1
“BMULTIMEDIA 2
r-—r— - '| r-—r——— - '|
| SIGNATURE | | | SIGNATURE |
| TYPE1 | | TYPE2 |
I | I |
|| METADATA || || METADATA ||
I | I |
| |
 [INGERPRINT], | [FINGERPRINTT] |
T | [FINGERPRINT 2| | | [FINGERPRINT 2] |
502 I | | |
I | I |
| | 506-_ | |
FIG. 5A | | 6\: |
| I |
| EMPTY || %41 [EMPTY ||
: EMPTY || : EMPTY ||
_______ | ep—
520
START
READ SIGNATURE(S)
524
v
CALCULATE THE NUMBER OF SIGNATURES OF EACH
TYPE FOR ALL VIDEOS. CREATE ARRAYS OF ENOUGH
SIZE FOR STORING SIGNATURES FOR ALL VIDEOS.
526
4
STORE IN APPROPRIATE
MULTIMEDIA SIGNATURE INDEX
528
T FIG. 5B

END

US 9,058,355 B1

Sheet 14 of 36

Jun. 16, 2015

U.S. Patent

095G

AldiA3
AldiN3

} a4 ¥ YIQINIINA
Sd4 € VIQINILTINW
L dd ZYICINILINW

——

¢ dd IVIGININW & =

VIVAvLdN

8vs
/

AldiN3
AldiN3 <

Nd4 | VIGIWINW ¥
$d4 7 VIOINILTINI Pl
N LYIGINIAR peg

¢dd | VIGINILINIA <
| dd) VIQGINILINW ¢

o
-

VIVAvL3In

RTEI a .\/wmm

XAANI H3LSNTO

. ALdINT
96 9Ol4d (NPT ~ppo
1
7
\\
7 42
/7 o ——] /
— \l\\ - —
— - - - \ — p— - - -
e _edd OL¥3INIOd
7 -~ 41d4 0L ¥31INIOd
s < s
- < s
< s
L7 VIvYavL3Iw
PRGN/l :
7 - Ve d
o7 ZYIQIWILINN
T —p) VIGIWLNN
. ob S¥S X3ANI FANLYNOIS
s v VIGINLLINA
by AIN <
I~
¢ AT ﬁ/@m
ZA | WS
LA ./

0vs

US 9,058,355 B1

Sheet 15 of 36

Jun. 16, 2015

U.S. Patent

08S

8.5

ALdN3

AldiN3

| d4 ¥ YIQINILINA

Sdd £ VICINILINW

} dd YITINILINI

¢dd | YIQINITINI

| d4) VIGINILINW

—

VIVAVLIW

AldN3

AldIN3

Ndd | VIGIWILTNW

Sd4 ZYIGINILINW

VN dd | VIGINILINW

¢dd | VIQINLEINA

L dd) VIGINILINW

V1vavLidan

e ——= —

—
—_————
——— Va

N Y0018 FHNLYNOIS

%
|

i
7
7
7

HALNIOd AN [H3IINIOd LHVLS

)

.

78S .~ 210078 TNLYNOIS

| Y3INJGd'ANT [M3INIOd LHVLS

e

- —

..\Hk.

—— ——

- 1

”

288

1 10079 JUNLYNDIS

-1 [

INIOd ONT [¥3INIOd LHVLS
P 7

e
e
e

VIVAVLIW

7L

¢LS

A

v A3
€A
¢ A
b A

X3ANI 93.LSNT10

¢ VIQIWILTNW

L VIAIWILINA

_‘B\xm_n_z_ FANLYNOIS

YIAIWLLINA

0.8

U.S. Patent Jun. 16, 2015 Sheet 16 of 36 US 9,058,355 B1

625

\

READ SIGNATURE(S) AND GENERATE CLUSTER
SIGNATURES IF NEEDED. ALL SIGNATURES ARE
GROUPED IN RESPECTIVE CLUSTERS.

630
v

FOR EACH CLUSTER IN WHICH NE\é\é1SIGNATURES FALL DO FOLLOWING.

URRENT CLUSTER SIZE ENOUG

IO STORE N%\:/))VZSIGNATURE?

NO
GET NEW MEMORY BLOCK WITH AT LEAST ENOUGH SPACE
TO STORE OLD PLUS NEW SIGNATURES. COPY THE OLD
SIGNATURE INTO NEW BLOCK IN RESPECTIVE POSITIONS.
634

)
GET AN EXCLUSIVE WRITE LOCK FOR THIS CLUSTER.
636

4
UPDATE THE CLUSTER INDEX KEY ENTRY TO POINT
TO THE NEW MEMORY BLOCK. DEALLOCATE OLD ARRAY.
638

¥
RELEASE THE EXCLUSIVE WRITE LOCK FOR THIS CLUSTER.
640
J

COPY THE NEW SIGNATURES IN THE NEW BLOCK.
642

NO

END?
YES
END

FIG. 6A

U.S. Patent Jun. 16, 2015 Sheet 17 of 36 US 9,058,355 B1

600

—_ e e e e e e e e e e . — — — — — — —— — — ——— ——————————

CLUSTER INDEX

" .
1 |
1 |
: KEY 1 i
L S0 REY2 > METADATA |
1 |
1 |
i MULTIMEDIA 1 - FP 1 503 l
! MULTIMEDIA 1 - FP 2 !
! EMPTY 505 !
| EMPTY i
| \ |
: 604 .
1 |
i Y02 |
_\CURRENT VIEW FOR

ONE CLUSTER

INDEX ENTRY AFTER

UPDATE UPDATED VIEW OF
v ONE CLUSTER
INDEX ENTRYX

Fmmmm—mmm e e e e — - -

CLUSTER INDEX
KEY 1
KEY 2

Y

METADATA

1

1

1

1

1

1

1

1

1

1

1

: MULTIMEDIA 1 - FP 1
! MULTIMEDIA 1 - FP 2
i NEW VIDEQ 2 FP 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

NEW VIDEO 2 FP 2

NEW VIDEO 2 614
SIGNATURES IN
THIS CLUSTER

\61 0 NEW VIDEO 2 FP 10
EMPTY

__

U.S. Patent Jun. 16, 2015 Sheet 18 of 36 US 9,058,355 B1

650

START
READ SIGNATURE(S) AND GENERATE CLUSTER
SIGNATURES IF NEEDED.
652
!

FOR EACH CLUSTER IN WHICH NEW SIGNATURES FALL DO FOLLOWING.
SEPARATE THE CLUSTERS INTO TWO GROUPS.
1) CURRENT CLUSTER SIZE IS SUFFICIENT FOR STORING NEW SIGNATURES.
2) CURRENT CLUSTER SIZE IS IN%UAIr:FICIENT FOR NEW SIGNATURES.
5

ARE
THERE ANY CLUSTER
WITH INSUFFICIENT SIZE?
656

YES

GET AN EXCLUSIVE WRITE LOCK FOR
ALL CLUSTERS IN GROUP 2 FOR UPDATE.
658

¥
GET NEW MEMORY BLOCK WITH AT LEAST ENOUGH SPACE
TO STORE OLD PLUS NEW SIGNATURES. COPY THE OLD
SIGNATURE INTO NEW BLOCK IN RESPECTIVE POSITIONS.
660
4
UPDATE THE CLUSTER KEY ENTRY TO
POINT TO THE NEW MEMORY BLOCK.
662

J
RELEASE THE EXCLUSIVE WRITE LOCK IF IT HAS BEEN ACQUIRED.
664

NO

COPY THE NEW SIGNATURES IN THE
CLUSTER BLOCK FOR ALL CLUSTERS.
666

END

FIG. 6C

U.S. Patent Jun. 16, 2015 Sheet 19 of 36 US 9,058,355 B1

720

START
READ SIGNATURE(S) AND GENERATE CLUSTER
SIGNATURES IF NEEDED.
722

v
FOR EACH CLUSTER THAT NEEDS
MODIFICATION DO FOLLOWING.
124

v
GET AN EXCLUSIVE WRITE LOCK FOR EACH CLUSTER.
726

v
FIND THE START AND END POINTER OF ALL SIGNATURE
BLOCKS OF THIS VIDEO FOR EACH CLUSTER.
728

v
DELETE THE SIGNATURES FROM THIS VIDEO AND
COALESCE ALL REMAINING SIGNATURES SO THAT
ALL SIGNATURES ARE STORED CONSECUTIVELY.
730
v
IF MUCH OF THE CLUSTER SPACE IS EMPTY, RELEASE
SOME MEMORY AND READJUST EACH CLUSTER SIZE.
732

v
RELEASE THE EXCLUSIVE WRITE LOCK
FOR EACH CLUSTE3IZ AS PROCESSED.
734

END

FIG. 7A

U.S. Patent

Jun. 16, 2015

CLUSTER INDEX

KEY 1

> KEY?2

KEY 3

702

\CURRENTWEWFOR
ONE CLUSTER
INDEX ENTRY

CLUSTER INDEX

KEY 1

KEY 2

KEY 3

Sheet 20 of 36 US 9,058,355 B1
700
v
___E
METADATA !
1
1
FP OTHER VIDEO i
703~ DELETEFP 1 VIDEO SIGS |
DELETE FP 2 TO BE :
DELETED !
FROM |
THIS |
105~—~5""DELETEFP 10 CLUSTER !
FP OTHER VIDEQ i
FP OTHER VIDEO !
704 EMPTY !
1
UPDATED VIEW OF
AFTER ONE CLUSTER INDEX
UPDATE ENTRY AFTER A
MULTIMEDIA DELETE_
___ ‘.
1
1
|
METADATA !
1
1
FP OTHER VIDEO i
FP OTHER VIDEO :
FP OTHER VIDEO i
712 EMPTY !
|
1
1
1
1

U.S. Patent Jun. 16, 2015 Sheet 21 of 36 US 9,058,355 B1

750

START

TRAVERSE MULTIMEDIA SIGNATURE INDEX AND
FIND MULTIMEDIA CONTENI ENTRY TO BE DELETED.
754

v
GET AN EXCLUSIVE WRITE LOCK TO
UPDATE MULTIMEDIA ENTRY TO BE DELETED
758

v
DELETE THE SIGNATURE ARRAYS ASSOCIATED
WITH THE MULTIMEDIATO BE DELETED
AT THE MULTIMEDIA SIGNATURE INDEX.
760

!

RELEASE THE EXCLBLéSIVE WRITE LOCK.
762

END

FIG. 7C

U.S. Patent Jun. 16, 2015 Sheet 22 of 36 US 9,058,355 B1

770
MULTIMEDIA
SIGNATURE INDEX
MULTIMEDIA 1 L
771~ MULTIMEDIA 2 ; | |
|
. SIGNATURE !
i METADATA | 2022, :
|
|
' [FINGERPRNT1 | !
i FINGERPRINT 2 :
|
772 : |
! I
| 1
| 1
| |
| 1
! 1
| |
: 1
|
! EMPTY |
i EMPTY 774
S
AFTER DELETING
MULTIMEDIA 2 FROM
MULTIMEDIA
SIGNATURE INDEX;
\
L
MULTIMEDIA
SIGNATURE INDEX
MULTIMEDIA 1

775~» MULTIMEDIA 2
(DELETED) 7_7|77

e e e e e e e e e e e e e e e i — — — — — — — — —— — — —— — ———————— ———

U.S. Patent Jun. 16, 2015 Sheet 23 of 36 US 9,058,355 B1

___ a0
i CLUSTER INDEX : /
! KEY 1 i
L 82 SREYD METADATA ;
| KEY 3 !
: FP OTHER VIDEO i
| FP OTHER VIDEO !
i FP LIVE EVENT VIDEO 1 }803 i
! FP LIVE EVENT VIDEO 1 :
! FP OTHER VIDEO !
i 802 FP OTHER VIDEO !
! FP OTHER VIDEO i
: EMPTY 804 i
I 1
VCRRENTVIRWFOR | [] o
UPDATED VIEW OF ONE
%%EE)?'-EL,{ISTTREYR AFTER CLUSTER INDEX ENTRY
UPDATE AFTER ANOTHER LIVE
EVENT UPDATE CHUNK\
| CLUSTER INDEX |
! KEY 1 ;
: KEY 2 METADATA !
i KEY 3 i
l FP OTHER VIDEO ;
i FP OTHER VIDEO !
! FP LIVE EVENT VIDEO 1 i
! FP LIVE EVENT VIDEO 1 !
: FP OTHER VIDEQ !
| 806 FP OTHER VIDEO |
! FP OTHER VIDEO i
! NEW FP 1 LIVE EVENT VIDEO { }805 !
i NEWFP 2 LIVE EVENTVIDEO 1| | FINGERPRINTS E
| N - T—
. UPDATE CHUNK !
i IN THIS .
! CLUSTER !

U.S. Patent Jun. 16, 2015 Sheet 24 of 36 US 9,058,355 B1

820
MULTIMEDIA 1 /
821~ LIVE EVENT VIDEO 1 |
METADATA %%%TURE
CHUNK 1 FP 1
CHUNK 1 FP 2 }823
EMPTY
892 EMPTY 824
UPDATED VIEW OF
AFTER
UPDATE MULTIMEDIA SIGNATURE
v INDEX AFTER ANOTHER
LIVE EVENT UPDATE CHUNK|

V. Tttt TTTTmTTem T rm e mm e 7
| |
! MULTIMEDIA 1 !
! LIVE EVENT VIDEO 1 | !
| |
i METADATA |
| |
| |
| |
. CHUNK 1 FP 1 '
| |
! CHUNK1FP2 | [
: 836~FCHUNK 2 FP 1 i
| 832 837~KCHUNK2FP2 | bg33 |
! 838 !
i ~BCHUNK 2FP3 |
| EMPTY !
: EMPTY 828 !
| |
| |
I |

U.S. Patent Jun. 16, 2015 Sheet 25 of 36 US 9,058,355 B1

850

(START)

READ THE NEXT LIVE
EVENT UPgDAéTE CHUNK
852

OBTAIN EXCLUSIVE WRITE LOCK
FORTHIS MUIéTLMEDIA ENTRY
854

IS FIRST
CHUNK FOR ANEW
MULTIMEDIA?
856

YES

NO

1S

SIGNATURE ARRAY YES

SIZE SUFFICIENT
TO STORE ADDITIONAL GET AN ALLOCATION FOR ANEW
NEW SIGNATURES? SIGNATURE ARRAY SUFFICIENT
864 TO STORE NEW SIGNATURES
858
GET NEW SIGNATURE ARRAY
ALLOCATION SUFFICIENT STORE SIGNATURES
ENOUGH TO STORE NEW IN THE NEW ARRAY
AND OLD SIGNATURES 860
866
RELEASE THE EXCLUSIVE WRITE LOCK
862
END

FIG. 8C

U.S. Patent Jun. 16, 2015 Sheet 26 of 36 US 9,058,355 B1
900
TTUCLUSTERINDEX [1 : ./
E KEY 1 METADATA :
! KEY 2 :
! FP OTHER VIDEO l
! FP OTHER VIDEO i ___________
i FP LIVE EVENT VIDEO 1| | ¢ e :
: FP LIVE EVENT VIDEO 1| | FINGERPRINTS FOR |
! FPOTHERVIDEO | LIVEEVENT YIDEOT |
! FP OTHER VIDEO !
i FP OTHER VIDEO !
! 902 |[FPLVEEVENTVIDEO(| o o |
| FP LIVE EVENT VIDEO 1] FINGERPRINTS FOR i
. LIVE EVENT VIDEO 1
e A — WY1 TOBEDELETED !
TE -\CURRENT VIEW FOR
ONE CLUSTER
DELETION INDEX ENTRY
KEY 1
e METADATA FIG. 9
FP OTHER VIDEO
FP OTHER VIDEQ
DELETED UPDATED VIEW OF ONE
}916 CLUSTER INDEX ENTRY
DELETED FINGERPRINTS AFTER ANOTHER LIVE
FP OTHER VIDEO| FORLIVE EVENT VIDEOQ DELETE
EVENTVIDEO ________ VRN VPRV PR S ;
FP OTHER VIDEOQ E) EPEE%IIEED | .
1
g1 [FP OTHER VIDEO | [KeV1 VETADATA :
DELETED }9 8 ' KEY2 !
DELETED ! !
914 EMPTY FOR e 1o i FP OTHER VIDEO] !
I1E\%NBTEVIDEO i FPOTHER VIDEO| !
DELETED : FPOTHERVIDEQ| |
i FP OTHER VIDEO i
i FPOTHERVIDEQ| 1
AFTER UPDATE , 024 ENPTY '
1 1
1 1
1 1

[

S

U.S. Patent Jun. 16, 2015 Sheet 27 of 36 US 9,058,355 B1

1000

SEARCH QUERY
1003

(

SEARCH
SERVERS || SEARCH SEARCH SEARCH
WITH | SERVER SERVER 2 SERVERN
DISTRIBUTED REFERENCE e
REFERENCE DB REFERENCE REFERENCE
DATABASE 1001, 1001, 1001,

RESULT COMBINER
1008

FIG. 10A

y

FINAL
RESULTS

U.S. Patent Jun. 16, 2015 Sheet 28 of 36 US 9,058,355 B1

1025

WAIT FOR ANEW UPDATE REQUEST
1030

YES

LIVE EVENT UPDATE?

FIND A SEARCH SERVER ACCORDING
TO DATABASE SPLITTING ALGORITHM
AND ASSIGN THIS UPDATE

IS
FIRST UPDATE
CHUNK?

TO THAT SERVER
1036 1034
NO
4 FIND THE SEARCH
END)« CONTROLLER TO WHICH
THIS RT UPDATE VIDEO
IS ASSIGNED AND ASSIGN
THIS NEW RT CHUNK TO IT.
1038

FIG. 10B

U.S. Patent Jun. 16, 2015 Sheet 29 of 36
1100
\ v
1102
SEARCH SEARCH SEARCH
SERVER 1| | SERVER2 |...| SERVERN
WITH WITH WITH
DATABASE1 |DATABASEZ2| [DATABASEN
REFERENCE
MODIFICATION [TRESULT COMBINER
REQUEST 1110
11127
MULTIMEDIA \
SEARCH
. QUERY 1104
o 1120
SEARCH SEARCH SEARCH
N SERVER1| | SERVER2 [...| SERVERN
WITH WITH WITH
DATABASE1 [DATABASEZ2| [DATABASEN
N RESULT COM
REFERENCE o |[ESUH CONBINER
MODIFICATION N 1!
REQUEST N REFERENCE
1122 MODIFICATION
. REQUEST

FIG. 11

SEARCH
SERVER2 |...

SEARCH
SERVERN

SEARCH
SERVER 1
WITH
DATABASE1

RESULT COMBINER
114

US 9,058,355 B1

FINAL
RESULT
1124

US 9,058,355 B1

Sheet 30 of 36

Jun. 16, 2015

U.S. Patent

HOLVIA
ON

00c1

ON

¢l 9Old
— 1121 — T2 — €0zl
02 Pal e 502)
S1IINSTY S1IINSTY SIS
) —
SIA SYINYTS S3A mmmﬁmm 702t
INZLNOD s VIIWILINA
VIGINILTNA ¥vINdod
N VIaIWILINW
¥3HLO v LSOW
ONINIYWIY N3k NReE
SE ,
ANIND—
c0c)
¥IHOLYdSIa
AYIND

U.S. Patent Jun. 16, 2015 Sheet 31 of 36 US 9,058,355 B1

SEARCH QUERY 1300
1301 v
v
QUERY DISTRIBUTOR
FORWARD THE QUERY TO THE TIER 1 BY DEFAULT FIG. 13
1302 .
v
[
SEARCH SEARCH I
CLUSTER 1 CLUSTER 2
1306 WITH TIER 1 1305 WITH TIER 1 FINAL
REFERENCE REFERENCE RESULT
DATABASE DATABASE 1320
—TIER 1 SYSTEM
SEARCH SEARCH SEARCH SEARCH BOTH CLUSTER
SERVER1| | SERVER2 | ||| SERVER1| | SERVER2 ||| HAVE LOADED
WITH WITH THE SAME TIER 1
DATABASE1 [DATABASE 2 DATARASE. ONLY
ONE CLUSTER
WORKS ON A
v ¥ SINGLE
RESULT COMBINER RESULT COMBINER] MULTIMEDIA
1308 1307 IDENTIFICATION
1304 ~_ QUERY.
RESULT
QUER MONITOR
DISTRIBUTOR- VES 1318
ARE MATCHING RESULTS FOUND
INTIER 1?
1310
NO
~TIER 2 SYSTEM
SEARCH | | SEARCH SEARCH gg{fﬁgﬁ THATIS
SERVER1| | SERVER2 |...| SERVERN T
WITH SEARCH QUERY IS
DATABASET FORWARDED TO
TIER 2 ONLY IF TIER 1
DOES NOT PROVIDE
A TR MATCHING RESULTS.
1312 1315

U.S. Patent Jun. 16, 2015 Sheet 32 of 36

1450

START

MAKE A NEW SEARCH QUERY
TO REMOTE SEARCH SYSTEM
1452

A 4

GET
RESULTS. MATCH FOUND?
1454

YES

DOWNLOAD REFERENCE SIGNATURES
FOR MATCHING MULTIMEDIA CONTENT
1456

v

BUILD LOCAL SEARCH DATABASE
1458

NO

ENTER INTO TRACK MODE
1460

y

MAKE ANEW TRACK QUERY TO
> THE LOCAL SEARCH SYSTEM
1462

YES —RESULTS. MATCH FOUND?

MAKE THE SAME FULL SEARCH QUERY
TO THE LOCAL SEARCH SYSTEM
1466

RESULTS. MATCH FOUND?

DIVERGENCE DETECTED. EXIT TRACK MODE.
1470

US 9,058,355 B1

FIG. 14A

US 9,058,355 B1

Sheet 33 of 36

Jun. 16, 2015

U.S. Patent

6Lyl
"HOLYIN ON ‘AY3ND _sopl
HOYY3S 31ON3Y JAON YOV¥L
‘JA0ON MOVHL eyl Lyl H3INT 3SYavLY(d
] 1IND "a319313d "JA0OW MOVHL HO¥Y3S TvO01
arl 9l =\ ERNENE 3NNILNOD a1ing "3ONIY343Y
"HOLVIN ON "ANNO4 HOLVW d3HOLVIN ¥O4
"HOYV3S 11N4 AY3ND HOYY3S TINd STANLYNDIS AVYOTNMOQ
D01 'HOLYIN ON Tv201 HOLYIN ON ANNO4 HOLVIN "AY3ND
A¥IND HOVHLIVOOT “AYND HOVHL YOO HOYY3S LI0N3Y
GZhl .
"JAON MOVHL 60Vl ‘0L
H3IN3T 3SYavLYad HOHY3aS "JAOW MOVHL
v201Q7INg "IONIHI43Y INNILNOD
A3HOLYIN HO4 SFHNLYNOIS aNNOA4
avYOINMOQ ‘ANNO4 HOLYI HOLYIN AY¥3ND
'AYIND HOYY3S ILOWIY MOVYL T¥D01
1 LIy ‘Sl 0 0
. ‘3O MOVHL eobl
ezvl ‘LTl INNILNOD "HOLYW ON
"HOLYIN ON "aNNoA AHAND
‘AM3IND HOLYN AY3ND HOYV3S
HOYY3S 3LON3Y MOVHL VD01 310N3Y
LEbL ‘62l ‘LZh)
"JA0ON MOVHL INNILNOD
‘ANNO4 HOLYI
AHIND MOVHL Va0
1 T 1

[OcyL [8evl [9zvl [wavl [zzvl T ozkl [8ibl T OLwl [viwl [2owl T 0wl [80w [90w) [wOvl [2ovl |

JWIL TV NI 3AVIA S3IY3ND HOYVIS ANV 301A3d NO @3AV1d INJLNOD VIAIWILTNIA

/

00v1L

U.S. Patent Jun. 16, 2015 Sheet 34 of 36 US 9,058,355 B1

1550

START
(NEW SEARCH QUERY)

v
CALCULATE THE HASH KEY
FROM THE QUERY SIGNATURES
1552

HASH
KEY PRESENT IN THE
LOOKUP TABLE?
1554

YES

NO
PERFORM ACTUAL SEARCH AGAINST
THE REFERENCE DATABASE.
1556
I
RE{TEUSFERTTS"'ETSOEFQ\ER[?H SORE THE SEARCH RESULTS INTHE
LOOKUP TABLE WITH THIS HASH KEY
IN THE LOOK-UP s
TABLE WITH THE 1558
HASH KEY. v
1562 RETURN THE RESULTS.
1560
END

FIG. 15A

U.S. Patent Jun. 16, 2015 Sheet 35 of 36 US 9,058,355 B1
1500
CLIENT QUERYING DEVICE j
(GENERATES SIGNATURES AND QUERY
USING SIGNATURE OR HASH KEYS)
1502
!
HASH KEY GENERATOR FROM THE
SIGNATURES (THESE KEYS ARE
DIFFERENT THAN THE CLUSTER KEYS)
THIS GENERATORS CAN LIE IN
QUERYING DEVICE OR AT SEARCH
SERVER AND AT EACH NODE IN THE
DISTRIBUTED CACHE NETWORK
1504
SEARCH
CENTRALIZED
NJCACHED RESULTS
SEARCH DISTRIBUTED Sﬁﬁs\,ﬁﬁEF%R
CACHED RESULTS ON 1506
NETWORK/P2P NETWORK —
ETC. FOR HASH KEYS N
1510 =
SEARCH
MAIN
SEARCH
SERVER
DATABASE
1508

FIG. 15B

US 9,058,355 B1

Sheet 36 of 36

Jun. 16, 2015

U.S. Patent

wrmr\.

. 0¢Sl
951 'Ol S1TNSTY HOYYIS IHL IAFOTY Ze5T
ANV WILSAS HOYVIS QIZITVEINTD | |- SR
JLON3Y THL OL STUNLYNDIS IAFOTY
AMINO FHL ONISN AYINOD
ON
48
:S1INSTY
(ETNERE}:] > an3
HL NI ANNO4 ~ S3A
HOLYIN
GZS)
TR
IAFOIY
T
s - —
WILSAS HONY3S 0z5T
Q3ZITVEINIO JLOWIY | | wmm%ﬁuw_mﬂuﬁh m_\m_uoE | s3uNLYNOIS LHVIS
JHL OL SAIY IHOVD NSRS 4 B VAINTS JIVYINTD
JHL ONISN AYIND

US 9,058,355 Bl

1

SCALABLE, ADAPTABLE, AND
MANAGEABLE SYSTEM FOR MULTIMEDIA
IDENTIFICATION

This application is a divisional of U.S. patent application
Ser. No. 13/102,479 filed May 6, 2011 which claims the
benefit of U.S. Provisional Patent Application Ser. No.
61/331,965 entitled “Scalable, Adaptable, and Manageable
System for Multimedia Identification” filed May 6, 2010 both
of which are hereby incorporated by reference in their
entirety.

CROSS REFERENCE TO RELATED
APPLICATIONS

U.S. patent application Ser. No. 14/151,294 filed Jan. 9,
2014 entitled “A. Scalable, Adaptable, and Manageable Sys-
tem for Multimedia Identification”, U.S. patent application
Ser.No. 12/141,163 filed Jun. 18, 2008 entitled “Methods and
Apparatus for Providing a Scalable Identification of Digital
Video Sequences”, U.S. patent application Ser. No. 12/141,
337 filed on Jun. 18, 2008, “Methods and Apparatus for
Multi-Dimensional Content Search and Video Identifica-
tion”, U.S. patent application Ser. No. 12/491,896 filed Jun.
25, 2009 entitled “Digital Video Fingerprinting Based on
Resultant Weighted Gradient Orientation Computation”,
U.S. patent application Ser. No. 12/612,729 filed Nov. 5, 2009
entitled “Digital Video Content Fingerprinting Based on
Scale Invariant Interest Region Detection with an Array of
Anisotropic Filters”, U.S. patent application Ser. No. 12/772,
566 filed May 3, 2010 entitled “Media Fingerprinting and
Identification System”, U.S. patent application Ser. No.
12/788,796 filed May 27, 2010 entitled “Multi-Media Con-
tent Identification Using Multi-Level Content Signature Cor-
relation and Fast Similarity Search”, U.S. patent application
Ser. No. 12/955,416 filed Nov. 29, 2010 entitled “Digital
Video Content Fingerprinting Using Image Pixel Intensity
and Color Information”, and U.S. patent application Ser. No.
13/076,628 filed Mar. 31, 2011 entitled “Scale/Affine Invari-
ant Interest Region Detection with an Array of Anisotropic
Filters for Video Fingerprinting” have the same assignee as
the present application, are related applications, and are
hereby incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

Media applications which include video and audio data-
base management, database browsing and identification are
undergoing explosive growth and are expected to continue to
grow. To address this growth, there is a need for a compre-
hensive solution related to the problem of creating a multi-
media sequence database and identifying, within such a data-
base, a particular multimedia sequence or sequences that are
tolerant of media content distortions. Multiple applications
include video database mining, copyright content detection
for video hosting web-sites, contextual advertising place-
ment, and broadcast monitoring of video programming and
advertisements.

Multimedia fingerprinting refers to the ability to generate
associated identifying data, referred to as a fingerprint, from
the multimedia image, audio and video content. A fingerprint
ideally has several properties. First, the fingerprint should be
much smaller than the original data. Second, the fingerprint
should be designed such that it can be searched for in a large
database of fingerprints. Third, the original multimedia con-
tent should not be able to be reconstructed from the finger-
print. Fourth, for multimedia content that is a distorted ver-

10

15

20

25

30

35

40

45

50

55

60

65

2

sion of another multimedia content, fingerprints of the
original and distorted versions should be similar. Examples of
some common multimedia distortions include, selecting a
clip of video content temporally, cropping the image data,
re-encoding the image or audio data to a lower bit rate, chang-
ing a frame rate of the video or audio content, re-recording the
multimedia data via some analog medium such as a cam-
corder in a movie theatre, and changing the aspect ratio of the
image content. A fingerprint with the fourth property is
deemed to be robust against such distortions. Such a system of
fingerprinting and search is preferable to other methods of
content identification. For example, multimedia watetmark-
ing changes the multimedia content by inserting watermark
data. Unlike multimedia watermarking, fingerprinting does
not change the content.

Fingerprinting is a very challenging problem. So also
developing a scalable system that can easily be managed,
changed, replicated is a challenging system problem.

Increasing demand for such fingerprinting and search solu-
tions, which include standard definition (SD) and high defi-
nition (HD) formats of video, three dimensional (3D) videos,
virtual reality media content, requires increasing sophistica-
tion, flexibility, and performance in the supporting algorithms
and hardware. The sophistication, flexibility, and perfor-
mance that are desired exceed the capabilities of current
generations of software based solutions, in many cases, by an
order of magnitude.

SUMMARY OF THE INVENTION

In one or more of its several aspects, the present invention
recognizes and addresses problems such as those described
above. To such ends, an embodiment of the invention
addresses a method for creating a distributed reference mul-
timedia database. A reference multimedia database is split
into a first identifiable portion and a second identifiable por-
tion. The first identifiable portion is stored at a first search
server and the second identifiable portion is stored at a second
search server. A first query is assigned to the first search server
based on the first identifiable portion stored therein and a
second query is assigned to the second search server based on
the second identifiable portion stored therein. The first query
is searched for at the first search server in parallel with the
second query searched for at the second search server to find
a first content stored in the first identifiable portion and a
second content stored in the second identifiable portion that
have a close match to the associated first query and to the
associated second query.

Another embodiment of the invention addresses a method
for creating a tiered multimedia reference database. A refer-
ence multimedia database is split into a first identifiable por-
tion having multimedia content representing the most sought
content and a second identifiable portion representing the
remaining content. The first identifiable portion is stored at a
first search server and the second identifiable portion is stored
at a second search server coupled to the first search server. A
first query is assigned to the first search server. The first query
is searched for at the second search server if a search for the
first query at the first search server is not successful to find
multimedia content stored in the first search server.

Another embodiment of the invention addresses a method
oftracking units of multimedia content. Reference signatures
retrieved from a remote search server for currently displayed
units of multimedia content are stored in a client device.
Matches in query results are detected for succeeding dis-
played units of multimedia content using a track search
approach to track current displayed units of multimedia con-

US 9,058,355 Bl

3

tent. Display of succeeding units of multimedia content are
blocked upon a no match indication detected in the query
results.

Another embodiment of the invention addresses a method
for query caching. Signatures of a video sequence are gener-
ated at a client. A cache key is generated from the signatures
at the client. A search of a remote reference database is
requested using the cache key. The remote reference database
is searched for a match with the cache key. Results linked with
amatching cache key are sent to the client, wherein the results
were generated from a previous full search of the reference
database.

A further embodiment of the invention addresses a method
of signature database organization by a cluster index. A first
set of first signature records for units of multimedia content
are stored in a cluster index data structure, wherein the first
signature records are grouped by a cluster key. A second set of
second signature records for units of multimedia content are
stored in a multimedia signature index data structure, wherein
the second signature records are grouped by a multimedia
identification. Signatures are shared in the single server
search system between the cluster index data structure and
multimedia signature index data structure.

These and other features, aspects, techniques and advan-
tages of the present invention will be apparent to those skilled
in the art from the following detailed description, taken
together with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a fingerprinting and search system for
media content fingerprinting and identification in accordance
with the present invention;

FIG. 2A illustrates a reference media database generation
process in accordance with the present invention;

FIG. 2B illustrates a query fingerprint generation process
in accordance with the present invention;

FIG. 2C illustrates a similarity search process in accor-
dance with the present invention;

FIG. 2D illustrates a candidate multimedia filtering pro-
cess in accordance with the present invention;

FIG. 2E illustrates a signature correlation process in accor-
dance with the present invention;

FIG. 2F illustrates an exemplary signature database orga-
nized by a cluster key index in accordance with the present
invention;

FIG. 2G illustrates an exemplary signature database orga-
nized by a multimedia signature index organization in accor-
dance with the present invention;

FIG. 3A illustrates an exemplary cluster key generation
from a media fingerprint in accordance with present inven-
tion;

FIG. 3B illustrates an exemplary process to generate a
cluster key using metadata information in accordance with
the present invention;

FIG. 3C illustrates an exemplary process to generate a final
cluster key in accordance with the present invention;

FIG. 4A illustrates an exemplary primary cluster index link
structure using the cluster keys, fingerprints, and metadata in
accordance with the present invention;

FIG. 4B illustrates an exemplary multiple cluster index
database in accordance with the present invention;

FIG. 4C illustrates a process to create a cluster index struc-
ture in accordance with the present invention;

20

35

40

45

55

60

65

4

FIG. 5A illustrates an exemplary signature database orga-
nized by multimedia ids that are used as multimedia signature
indexes to fingerprint arrays in accordance with the present
invention;

FIG. 5B illustrates a process to create a multimedia signa-
ture index in accordance with the present invention;

FIG. 5C illustrates a data sharing organization that is con-
figured with an exemplary cluster index and multimedia
index data structure that supports sharing multimedia finger-
prints in accordance with the present invention;

FIG. 5D illustrates another exemplary cluster index and
multimedia index data structure that supports sharing multi-
media fingerprints in accordance with the present invention;

FIG. 6A illustrates a process for updating a cluster index
structure when fingerprints for a new multimedia content are
received in accordance with the present invention;

FIG. 6B illustrates an exemplary state diagram showing a
cluster index structure before and after an update that added
fingerprints for a new multimedia in accordance with the
present invention;

FIG. 6C illustrates a process for updating the cluster index
structure where an exclusive cluster lock is obtained for all of
the clusters that need more space for new signatures in accor-
dance with the present invention;

FIG. 7A presents a process for updating cluster index struc-
ture to remove fingerprints associated a multimedia content to
be deleted in accordance with the present invention;

FIG. 7B illustrates an exemplary state diagram showing a
primary index structure before and after deleting fingerprints
for multimedia content to be deleted in accordance with the
present invention;

FIG. 7C illustrates a process to delete fingerprints from the
multimedia index in accordance to the present invention;

FIG. 7D illustrates an exemplary state diagram that shows
the multimedia signature index structure before and after
content has been deleted from it according the present inven-
tion;

FIG. 8A illustrates an exemplary state diagram showing a
cluster index structure before and after an intermediate live
event update for a portion of a multimedia content in accor-
dance with the present invention;

FIG. 8B illustrates an exemplary state diagram showing a
multimedia index structure before and after an intermediate
live event update for a portion of multimedia content in accor-
dance with the present invention;

FIG. 8C illustrates an exemplary process to update the
multimedia signature index for a live event update in accor-
dance with the present invention;

FIG. 9 illustrates an exemplary state diagram showing a
cluster index structure before and after deleting a portion of a
multimedia content that was previously added using a live
event update process in accordance with the present inven-
tion;

FIG. 10A illustrates an exemplary system having multiple
search servers and a distributed reference database in accor-
dance with the present invention;

FIG. 10B illustrates an exemplary process to decide how to
add multimedia content to a distributed reference database in
accordance with the present invention;

FIG. 11 illustrates an exemplary multi-cluster multimedia
identification system in accordance with the present inven-
tion;

FIG. 12 illustrates an exemplary a three tier hierarchical
system for a multimedia identification in accordance with the
present invention;

FIG. 13 illustrates an exemplary two tier system for a
multiple tier multi-cluster system that achieves reference

US 9,058,355 Bl

5

database scaling as well as performance scaling in accor-
dance with the present invention;

FIG. 14A illustrates an exemplary process for multimedia
identification and matched multimedia tracking at a local
client in accordance with the present invention;

FIG. 14B illustrates an exemplary state diagram of various
search queries done at a client that has ability to perform local
multimedia track function in accordance with the present
invention;

FIG. 15A illustrates an exemplary search process operating
on a search server with query caching functionality in accor-
dance with the present invention;

FIG. 15 B illustrates a distributed search system process
that incorporates centralized and distributed cache servers in
accordance with the present invention; and

FIG. 15C illustrates a process executed at query clients for
cache based multimedia content search in accordance with
the present invention.

DETAILED DESCRIPTION

The present invention will now be described more fully
with reference to the accompanying drawings, in which sev-
eral embodiments of the invention are shown. This invention
may, however, be embodied in various forms and should not
be construed as being limited to the embodiments set forth
herein. Rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully
convey the scope of the invention to those skilled in the art.

It will be appreciated that the present disclosure may be
embodied as methods, systems, or computer program prod-
ucts. Accordingly, the present inventive concepts disclosed
herein may take the form of a hardware embodiment, a soft-
ware embodiment or an embodiment combining software and
hardware aspects. Furthermore, the present inventive con-
cepts disclosed herein may take the form of a computer pro-
gram product on a computer readable storage medium having
non-transitory computer usable program code embodied in
the medium. Any suitable computer readable medium may be
utilized including hard disks, CD-ROMs, optical storage
devices, flash memories, or magnetic storage devices.

Computer program code or software programs that are
operated upon or for carrying out operations according to the
teachings of the invention may be written in a high level
programming language such as C, C++, JAVA®, Smalltalk,
JavaScript®, Visual Basic®, TSQL, Python, Ruby, Peri, use
of NET™ Framework, Visual Studio® or in various other
programming languages. Software programs may also be
written directly in a native assembler language for a target
processor. A native assembler program uses instruction mne-
monic representations of machine level binary instructions.
Program code or computer readable medium as used herein
refers to code whose format is understandable by a processor.
Software embodiments of the disclosure do not depend upon
their implementation with a particular programming lan-
guage.

The methods described in connection with the embodi-
ments disclosed herein may be embodied directly in hard-
ware, in a software module executed by a processor, or in a
combination of the two. A software module may reside in
RAM memory, flash memory, ROM memory, EPROM
memory, EEPROM memory, registers, hard disk, a remov-
able disk, a CD-ROM, or any other form of storage medium
known in the art. A computer-readable storage medium may
be coupled to the processor through local connections such
that the processor can read information from, and write infor-
mation to, the storage medium or through network connec-

10

15

20

25

30

35

40

45

50

55

60

6

tions such that the processor can download information from
or upload information to the storage medium. In the alterna-
tive, the storage medium may be integral to the processor.

Systems and methods are described that are highly scalable
to very large multimedia databases. A reference multimedia
database can be modified by adding a unit of multimedia
content or removing an existing unit of multimedia content
while it is being used for multimedia identification. A unit of
multimedia content may be a frame or a sequence of frames of
a video, an audio clip, other multimedia formatted data, such
as frames from a movie. A unit of multimedia content may
also be a television show without advertisements, an adver-
tisement, a song, or similar unit of communication. The
search system can be tuned to the desired speed of multimedia
matching by centralized and distributed systems, by replica-
tion of individual search machines or search machine clus-
ters, by use of a hierarchical tier of search machines and
reference databases, by partitioning of reference databases,
by multimedia query caching, by local client search methods,
by client tracking, or by combinations of the previously men-
tioned arrangements. As an example, the search system can be
implemented in a centralized client server model, or as a
distributed system, or by a combination of such approaches.
Also, adistributed search system may be operable on a variety
of distributed networks, such as a peer to peer (P2P) system.
In addition, search functions or a complete search operation
may be operable at the client.

The following nomenclature is used in describing the
present invention. For example, multimedia content repre-
sents any video, audio or audio-visual content. Multimedia
content may also represent a series of photographs or pic-
tures, a series of audio files, or other associated data, such as
3D video content or 4D content in which sensory feedbacks
such as touch feedback sensations are presented simulta-
neously with visual and audio content.

The terms signature and fingerprint both denote the same
structure of a sequence of bits and may be used interchange-
ably. A fingerprint is generated to represent a unit of multi-
media content using a fingerprinting method that operates on
the unit of multimedia content. A cluster key is a type of hash
key. A cluster index is a data structure that holds all of the
signatures that have the same cluster key. A multimedia sig-
nature index is a data structure that is used to hold signatures
associated with a unit of multimedia content.

A number of exemplary goals of a multimedia identifica-
tion system include an ability to handle large capacity multi-
media databases and high density media files. The multime-
dia identification system is to provide high performance and
respond with accurate media identification when queried.
Also, the overall design should be scalable to efficiently
handle increasing capacity of the multimedia databases and
an arbitrary length of a query sequence.

To provide for such needs, FIG. 1 illustrates a fingerprint-
ing and search system 100 for both media fingerprinting and
identification in accordance with an embodiment of the
present invention. The fingerprinting and search system 100
includes user sites 102 and 103, a server 106, a video database
108, and a video fingerprinting and video identification pro-
cess 112 operated, for example, by user site 102. A network
104, such as the Internet, a wireless network, or a private
network, connects sites 102 and 103 and server 106. Each of
the user sites, 102 and 103 and server 106 may include a
processor complex having one or more processors, having
internal program storage and local user controls such as a
monitor, a keyboard, a mouse, a printer, and may include
other input or output devices, such as an external file storage
device and communication interfaces.

US 9,058,355 Bl

7

The user site 102 may comprise, for example, a personal
computer, a laptop computer, a tablet computer, or the like
equipped with programs and interfaces to support data input
and output and video fingerprinting and search monitoring
that may be implemented both automatically and manually.
The user site 102, for example, may store programs, such as
the video fingerprinting and search process 112 which is an
implementation of a content based video identification pro-
cess of the present invention. The user site 102 may also have
access to such programs through electronic media, such as
may be downloaded over the Internet from an external server,
accessed through a universal serial bus (USB) port from flash
memory, accessed from disk media of various types, or the
like. The fingerprinting and search system 100 may also suit-
ably include more servers and user sites than shown in FIG. 1.
Also, multiple user sites each operating an instantiated copy
or version of the video fingerprinting and search process 112
may be connected directly to the server 106 while other user
sites may be indirectly connected to it over the network 104.

User sites 102 and 103 may generate user video content
which is uploaded over the Internet 104 to a server 106 for
storage in the video database 108. The user sites 102 and 103,
for example, may also operate a video fingerprinting and
video identification process 112 to generate fingerprints and
search for video content in the video database 108. The video
fingerprinting and video identification process 112 in FIG. 1
is scalable and utilizes highly accurate video fingerprinting
and identification technology as described in more detail
below. The process 112 is operable to check unknown video
content against a database of previously fingerprinted video
content, which is considered an accurate or “golden” data-
base. The video fingerprinting and video identification pro-
cess 112 is different in a number of aspects from commonly
deployed processes. For example, the process 112 extracts
features from the video itself rather than modifying the video.
The video fingerprinting and video identification process 112
allows the server 106 to configure a “golden” database spe-
cific to its business requirements. For example, general mul-
timedia content may be filtered according to a set of guide-
lines for acceptable multimedia content that may be stored on
the business system. The user site 102 that is configured to
connect with the network 104, uses the video fingerprinting
and search process 112 to compare local video streams
against a previously generated database of signatures in the
video database 108.

The video database 108 may store video archives, as well
as data related to video content stored in the video database
108. The video database 108 also may store a plurality of
video fingerprints that have been adapted for use as described
herein and in accordance with the present invention. It is
noted that depending on the size of an installation, the func-
tions of the video fingerprinting and search process 112 and
the management of the video database 108 may be combined
in a single processor system, such as user site 102 or server
106, and may operate as directed by separate program threads
for each function.

The fingerprinting and search system 100 for both media
fingerprinting and identification is readily scalable to very
large multimedia databases, has high accuracy in finding a
correct clip, has a low probability of misidentifying a wrong
clip, and is robust to many types of distortion. The finger-
printing and search system 100 uses one or more fingerprints
for a unit of multimedia content that are composed of a
number of compact signatures, including cluster keys and
associated metadata. The compact signatures and cluster keys
are constructed to be easily searchable when scaling to a large
database of multimedia fingerprints. The multimedia content

10

15

20

25

30

35

40

45

50

55

60

65

8

is also represented by many signatures that relate to various
aspects of the multimedia content that are relatively indepen-
dent from each other. Such an approach allows the system to
be robust to distortion of the multimedia content even when
only small portions of the multimedia content are available.

Multimedia, specifically audio and video content, may
undergo several different types of distortions. For instance,
audio distortions may include re-encoding to different sample
rates, rerecording to a different audio quality, introduction of
noise and filtering of specific audio frequencies or the like.
Video distortions may include cropping, stretching, re-encod-
ing to alower quality, using image overlays, or the like. While
these distortions change the digital representation, the multi-
media is perceptually similar to undistorted content to a
human listener or viewer. Robustness to these distortions
refers to a property that content that is perceptually similar
will generate fingerprints that have a small distance according
to some distance metric, such as Hamming distance for bit
based signatures. Also content that is perceptually distinct
from one another will generate fingerprints that have a large
distance, according to the same distance metric. A search for
perceptually similar content, hence, is transformed to a prob-
lem of searching for fingerprints that are a small distance
away from the desired fingerprints.

FIG. 2A illustrates a reference media database generation
process 200 in accordance with the present invention. Refer-
ence units of multimedia content, such as video or movie clips
202,,202,,...202, that arerelevant to the application athand
are identified. The clips 202, 202, . . . 202,, refer to distinct
units of multimedia content. For example, the clips could be
from a movie and represent different temporal portions of the
movie, or they could be from different movies. Using a video
fingerprinting function 203 of the video fingerprinting and
search process 112, reference signatures 204,204, ...204,,
are generated for the reference multimedia clips 202,
202,, . . . 202,, respectively, along with hashing data and
associated metadata, where M may be different than N. Dif-
ferent pieces of multimedia content may be fingerprinted
independently, leading to a parallelizable system. The set of
reference signatures 204,204, . . . 204, ,created by the video
fingerprinting function 203 is organized by database genera-
tion function 206 into a reference database 208. This set of
reference signatures is indexed by the generated hashing data,
described in further detail below. The associated metadata,
also described in further detail below, is stored along with
each reference signature. A set of reference signatures may
also be indexed in other ways, for instance, by multimedia
identifiers. A single multimedia identifier denotes a distinct
piece of multimedia content. For instance, the multimedia
clips 202,202, .. .202, would each be represented by their
own multimedia identifier.

FIG. 2B illustrates a query fingerprint generation process
220 in accordance with the present invention. A user requests
identification of an unknown multimedia clip 222, also
referred to herein as a query multimedia clip 222. The query
multimedia clip 222 is processed by the video fingerprinting
function 203 to generate query signatures, hash data, and
associated metadata, known collectively as a query finger-
print 224, for the unknown multimedia clip 222.

FIG. 2C illustrates a similarity search process 230 inaccor-
dance with the present invention. For each query signature in
the query fingerprint 224, a similarity search function 232 is
initiated to find similar signatures in the reference database
208. The hash data associated with each query signature is
used to restrict the similarity search function 232 to a rela-
tively small portion of the reference data, allowing the simi-
larity search to be extremely fast even for large reference

US 9,058,355 Bl

9

databases. Only reference signatures that are “similar” within
a distance measure to the query signature are returned. These
classified similar reference signatures are added to a candi-
date list 234, which contains identifying information regard-
ing which reference multimedia clip 202, 202, . . . 202, the
similar reference signatures belong.

FIG. 2D illustrates a candidate video filtering process 240
in accordance with the present invention. The video filtering
process 240 analyzes the candidate list 234 for the most likely
matches in the reference database 208. The candidate list 234
is sorted in top multimedia clips function 242 to find the top
most likely matching multimedia clips. The resulting data is
stored in a list of top clips 244. The list of top clips 244
includes a multimedia identifier for the similar reference mul-
timedia clip. A most likely matching multimedia clip might
be only for a specific portion of the multimedia clip, for
instance, a particular time segment, such as seconds 93 to 107
of a video sequence, or spatial locations, such as top left
quadrant in each of the clip’s video frames. The temporal
identification and spatial locations are also included in the list
of top clips.

FIG. 2E illustrates a signature correlation process 250 in
accordance with the present invention. The list of top clips
244 is selected for correlation. For each of the clips in the top
clips list 244, a set of reference signatures is accessed from the
reference database 208 based on the multimedia identifier and
any temporal and/or spatial information. A query could cor-
respond to “all reference signatures for video number ABC
from time 10.4 seconds to 25.7 seconds in the bottom-right
quadrant of the frame”. These reference signatures are not
restricted to have matching cluster keys and the criteria to
select a subset of them can be further specified. This set of
reference signatures is compared against the query signatures
using a signature correlation procedure 252. For each query
signature, a score is derived based on the number of matches
and the distances to the closest signatures in the set of selected
reference signatures. The distances measured could include,
forinstance, the average distance. These scores are combined,
for example, the scores are averaged, for the entire set of
query signatures to give an overall score for a particular
reference database clip. Based on whether this score is over a
threshold, the reference database clip is determined to be a
true positive or a false positive. The signature correlation
procedure 252 is repeated for all clips in the top clips list 244,
to produce a list of matching reference videos, since there
may be more than one, if similar content is repeated in the
database, for example. The fingerprinting function 203 of
FIG. 2A and FIG. 2B belongs to a multimedia fingerprinting
system of the fingerprinting and search system 100, while the
database generation function 206 of FIG. 2A, the similarity
search process 230 of FIG. 2C, the candidate video filtering
process 240 of FIG. 2D, and the signature correlation process
250 of FIG. 2E belong to a search system of the fingerprinting
and search system 100.

FIG. 2F illustrates an exemplary signature database 2000
organized by a cluster key index in accordance with the
present invention. The signature records for all the multime-
dia content that is to be put into the signature database 2000
are collected together and grouped by a cluster key. At this
stage of processing, the number of signatures that belong to
particular cluster key is known so the memory space for the
signature records can be allocated and signature records may
be stored in the memory. The signature records stored in the
memory are not considered fixed and unchangeable and
dynamic updates to the signature records may added as
described in more detail below.

10

15

20

25

30

35

40

45

50

55

60

65

10

It is advantageous for search operations that the signature
records for a particular cluster key be stored contiguously.
The set of signatures belonging to a cluster key is called a
cluster. For example, 100 signatures and corresponding clus-
ter keys may be generated having 50 signatures with a cluster
key A, 30 signatures with a cluster key B and 20 signatures
with a cluster key C. Thus, the 100 signatures are organized
into three clusters, cluster A with 50 signatures, cluster B with
30 signatures and cluster C with 20 signatures that are stored
in memory.

For each cluster key, the number of signatures and a pointer
to the location where the corresponding signature records
begin is stored for processing. Since the space of cluster keys
may be relatively small, for example, a 16-bit cluster key
implies a maximum 65,536 entries, other possible cluster
keys, such as 24-bit or 32-bit cluster keys, can be used as
indexes to locate signature clusters in an array. Alternative
arrangements of signatures, such as organizations in the form
of a binary tree or in the form of a B-tree or similar data
structures may also be used. However, aspects of using the
clusterkeys as indexes in an array are discussed further below.

As shown in FIG. 2F, a cluster key array 2002 stores one
element for each possible cluster key. The index into the
cluster key array 2002 is the integer interpretation of the
cluster key as a binary number. Thus, given a cluster key,
direct addressing into the array 2002 retrieves the number of
matching signatures and where corresponding signature
records are located, such as a link reference address (LRA) to
a list of signature records 2004 or 2006. In FIG. 2F, for
example, clusterkey “0101001010101010” is located at entry
2008, which links to the array of signature records 2004, and
cluster key “1011010100101010” is located at entry 2010,
which links to the array of signature records 2006. Each entry
in cluster key array 2002, such as entries 2008 and 2010, have
an additional field included in the entry that stores the link
reference address (LRA) to a signature record array, such as
signature record 2004 and 2006.

FIG. 2G illustrates an exemplary signature database 2050
organized by a multimedia signature index organization in
accordance with the present invention. The multimedia sig-
nature index organization supports accesses of the signature
records corresponding to a multimedia identification (id),
from a starting playout time to an ending playout time. The
multimedia signature index organization is useful for the
signature correlation process, discussed above with regard to
FIG. 2E. The multimedia signature index organization is
based on a hash table 2052 organized by multimedia id. For
example, a hash table entry 2058 stores a pointer to the data
structure 2060 that holds metadata and all of the signatures for
this multimedia id “vo102340910” stored in an array 2054.
The signatures are stored in playout timestamp order within
every array2054, 2056 in the signature database 2050.

The exemplary signature database 2000 and the exemplary
signature database 2050 may be stored either in a local com-
puter’s main memory, such as RAM, or on a hard disk drive.
One embodiment is to store one or both of the video database
structures in main memory as access speeds are significantly
faster. A performance versus capacity tradeoff may be made
concerning the remaining capacity of main memory versus
the remaining capacity of the hard drive once the video data-
base structures are stored.

An exemplary embodiment of signature formation, also
referred to as fingerprinting, and database formation is
described in U.S. patent application Ser. No. 12/141,163 filed
Jun. 18,2008, FIGS. 11-16 and page 25, line 3 to page 28, line
18. Another exemplary embodiment of fingerprinting and
database formation is described in U.S. patent application

US 9,058,355 Bl

11

Ser. No. 12/612,729 filed Nov. 5, 2009, FIGS. 12-14 and page
28, line 20 to page 31, line 13. Another exemplary embodi-
ment of fingerprinting and database formation is described in
U.S. patent application Ser. No. 12/491,896 filed Jun. 25,
2009, FIGS. 8-10 and page 20, line 8 to page 24, line 22.
Another exemplary embodiment of fingerprinting and data-
base formation is described in U.S. patent application Ser.
No. 12/772,566 filed May 3, 2010, FIGS. 4-9B and page 23,
line 6 to page 40, line 6. A further exemplary embodiment of
fingerprinting and database formation is described in U.S.
patent application Ser. No. 12/955,416 filed Nov. 29, 2010,
FIGS. 6-12, and page 16, line 8 to page 29, line 15. An
exemplary embodiment of a system and database formation
process is described in U.S. patent application Ser. No.
12/141,337 filed Jun. 18, 2008, FIGS. 1A, 1B, 1C, and 4-7,
and page 6, line 15 to page 14, line 18 and page 21, line 11 to
page 24, line 21. Another exemplary embodiment of a system
and database formation process is described in U.S. patent
application Ser. No. 12/772,566 filed May 3, 2010, FIGS. 1-3,
and page 10, line 10 to page 23, line 5. A further exemplary
embodiment of a system and database foimation process is
described in U.S. patent application Ser. No. 12/788,796 filed
May 27,2010, FIGS. 1, 2A and 2B, and page 6, line 14 to page
13, line 2. An exemplary embodiment of query search is
described in U.S. patent application Ser. No. 12/141,163 filed
Jun. 18,2008, FIG. 17, and page 28, line 19 to page 29, line 6.
Another exemplary embodiment of query search is described
in U.S. patent application Ser. No. 12/141,337 filed Jun. 18,
2008, FIGS. 2A-3B and 8, and page 14, line 19 to page 21,
line 10 and page 24, line 22 to page 26, line 10. Another
exemplary embodiment of query search is described in U.S.
patent application Ser. No. 12/612,729 filed Nov. 5, 2009,
FIG. 15, and page 31, line 14 to page 32, line 15. Another
exemplary embodiment of query search is described in U.S.
patent application Ser. No. 12/772,566 filed May 3, 2010,
FIGS. 10-13, and page 40, line 7 to page 45, line 14. A further
exemplary embodiment of query search is described in U.S.
patent application Ser. No. 12/788,796 filed May 27, 2010,
FIGS. 3-10, and page 13, line 3 to page 43, line 2. Modifica-
tions of the above illustrative approaches or other approaches
may be employed consistent with the teachings of the present
invention.

The following discussion now focuses on further details of
the search system. First a search system composed of a single
server is described. Later a multi-server search system is
described.

A single search server has two main databases that store
video fingerprints of reference videos. Each fingerprint is a
string of bits of specified length and associated metadata such
as the frame number, video name, type of the signature and
the like. The fingerprint may also contain the compact cluster
key. A cluster key is a string of bits of smaller length than that
of the main fingerprint. A cluster key can be generated at the
search server using a hashing algorithm. A single search
server may use a predefined hashing algorithm to generate a
cluster key for a given reference signature.

An example cluster key generation process 300 is pre-
sented in FIG. 3A. In the example, a fingerprint 302 is shown
having 128 bits and a generated cluster key 304 is shown
having 32 bits. For every four bits from the fingerprint 302,
one bit of the cluster key 304 is generated using an XOR
operation on all of the four bits. Specifically, bit number one
308 in the cluster key 304 is obtained by performing XOR
operation 306 on bits x1, x2, x3 and x4 from the fingerprint
302. In similar manner, the thirty second bit 312 in the cluster
key 304 is obtained by performing XOR operation 310 on bits
x125, x126, x127 and x128 from the fingerprint 302.

10

15

20

25

30

35

40

45

50

55

60

65

12

The generated cluster key 304 can be modified using other
information such as metadata associated with this fingerprint
302. FIG. 3B depicts a process 320 that uses metadata infor-
mation at step 324 to modify an intermediate cluster key at
step 326. The intermediate cluster key at step 326 is generated
by applying a hashing algorithm such as the cluster key gen-
erator process 300 to a fingerprint obtained at step 322. The
intermediate cluster key at step 326 obtained in this process
can modified by appending more bits to the metadata
obtained at step 324. For example, the intermediate cluster
key at step 326 can be appended with eight more bits to form
a final cluster key at step 328. that uniquely distinguishes
categories of multimedia content. For example, “binary
00000001 may indicate a basketball game and “binary
00000010” may indicate a “baseball” game. The binary num-
bers 00000001, 00000010 are predefined to represent speci-
fied categories. The intermediate cluster key at step 326 can
also be modified using metadata obtained at step 324. For
example, the eight bits, that identify the TV channel associ-
ated with this reference multimedia, can replace the last eight
bits of the cluster key.

FIG. 3C presents a process 340 to decide whether to gen-
erate a final cluster key at the search server. At block 344, the
search server reads all the fingerprints for a given unit of
multimedia content, such as a clip of a video. At decision box
346, a determination is made whether the signature data con-
tains cluster keys. If cluster keys are found then the signature
data is passed directly to block 350. At block 350, a cluster
index and a multimedia signature index are built. If cluster
keys are not present, the process 340 proceeds to block 348.
At block 348, cluster keys are generated as described in the
process 320. The generated cluster keys are then passed to the
next state at connector 352.

The single search server system continues with the creation
of the cluster index in reference to FIGS. 4A, 4B, and 4C.
When the search server starts, at block 344 of F1IG. 3C, itreads
all the fingerprint data for all of the units of reference multi-
media content that need to be loaded at this search server. The
search server then builds a cluster index and the multimedia
signature index from the fingerprint data as described below.

Briefly, fingerprints having the same cluster key are
grouped and stored together in an array. The beginning of this
array is then indexed using the associated cluster key. Meta-
data of each signature along with the actual signatures are also
stored in this array. Signatures from a single video are stored
preferably consecutively in one chunk though alternative
methods of storing are not precluded.

A cluster index is an associated array that maps a cluster
key to the array of signatures associated with that cluster key.
Each entry in the cluster index may also include other meta-
data information such as the number of signatures associated
with this hash entry, list of the videos that have some signa-
tures associated with this hash entry and the like.

FIG. 4A illustrates an exemplary primary cluster index
structure 400 built using the cluster keys, fingerprints and
metadata. The cluster index structure 400 shows details of
two clusters 408, 410 that are accessed using key 2 403 and
key k 405 within the cluster index array 402. Accessing link
references stored at the key 2 403 in the cluster index 402
provides access to metadata 404 and also to the array of
signatures 408 associated with this cluster key 2 403. In this
example, the array of associated signatures 408 stores the
signatures of various videos having the same cluster key 2
403. A consecutive block 411 of signatures 1 to N-1 corre-
sponds to a subset of signatures from video 1 having cluster
key 2 403. These signatures are followed by another block
412 of signatures associated with video 2 after which there is

US 9,058,355 Bl

13

single signature 414 of video 1 again and two empty spaces
416 to hold two more signatures of any other video. Similarly,
key k 405 has a link reference to metadata 406 and also to an
array of associated signatures 410. Video 1 and video 2 are
shown to have fingerprints in this array 410 as well.

It is not necessary to have only a single cluster index. FIG.
4B shows a multiple signature index database 420 that can be
built if there are different types of signatures. Each type of
signature would be placed in a corresponding cluster index
such as cluster index-1 422, cluster index-2 423, and includ-
ing up to cluster index-N 426. For example, if two different
algorithms are used to generate fingerprints, two cluster
indexes, one for each type of fingerprint, could be created.
Use of multiple cluster indexes can improve identification,
reduce false positives and improve the speed at which video
identification is performed. Multiple cluster indexes may also
be built from a single type of signature with multiple different
cluster keys. In such cases each cluster index would be built
from a particular type of cluster key.

FIG. 4C shows a process 440 for creating a cluster index
structure. At block 444, the signatures from the units of mul-
timedia content to be loaded at this search server are read and
the cluster keys are generated if not already available. At
block 446, a cluster index array is created. For each cluster
key, the number of signatures falling in each cluster are cal-
culated, and an array with enough space to store all these
signatures in each cluster is obtained. At block 448, each
signature is placed in an appropriate array associated with the
cluster key of this signature.

The single server search system continues with the creation
of the multimedia signature index in reference to FIG. 5A,
and FIG. 5B. For each unit of multimedia content that is to be
included in the reference database, an array or arrays of
fingerprints associated with that video is created. A multime-
dia signature maps a multimedia content id to the fingerprint
array associated with that multimedia identification (id). As
an example, FIG. 5A depicts an exemplary multimedia sig-
nature index organization 500 based on multimedia ids. Two
fingerprint arrays 504, 506 are associated with multimedia id
2 503. Each fingerprint array 504 and 506 is allocated for one
particular type of fingerprint.

FIG. 5B illustrates a process 520 to build a multimedia
signature index organization as described with regard to FIG.
5A. At block 524, the signatures are read. At block 526, the
number of signatures of each type is calculated for the mul-
timedia content to be stored in the database. Also at block 526,
arrays of appropriate size to store these signatures are allo-
cated. At block 528, the signatures are placed in a correspond-
ing array. In these signatures arrays, the signatures are pref-
erably arranged in increasing timestamp order.

In the single server search system, signature sharing is
illustrated between cluster indexes and multimedia signature
indexes in FIGS. 5C and 5D. Returning to FIGS. 4A and 5A,
signatures along with their associated metadata are stored
separately in the cluster index 400 and multimedia signature
index organization 500. Signatures can also be shared across
these two data structures by sharing link references. Such
sharing would reduce memory capacity requirement to store
the same amount of reference database and thus increase the
capacity of the reference database for new contents. A num-
ber of advantageous ways of sharing signatures across these
two data structures are described in more details below.

In a first approach, shown in FIG. 5C, a multimedia signa-
ture index stores a link reference to signatures in a cluster
index data structure. FIG. 5C illustrates a data sharing orga-
nization 540 that is configured with an exemplary cluster
index 546 and multimedia signature index 542 that supports

10

15

20

25

30

35

40

45

50

55

60

65

14

sharing fingerprints in accordance with the present invention.
In FIG. 5C, the cluster index 546 is shown with details for two
cluster keys, key-3 541 and key-4 543. Key-3 541 is shown
with a link reference to fingerprint array 548 and key-4 is
shown with a link reference to the fingerprint array 550. The
multimedia signature index 542 illustrates an entry 547 ref-
erence for multimedia-1. The signature array 544 referenced
by the multimedia-1 entry 547 stores link references for link
paths 552, 554, 556, 558, 560 to the associated signatures
within the fingerprint arrays 548 and 550 associated with the
cluster index 546.

FIG. 5D illustrates another exemplary cluster index and
multimedia index data structure 570 that supports sharing
multimedia fingerprints in accordance with the present inven-
tions. In this approach, multimedia signature index 572 main-
tains a list of “start and end pointers” in a signature array 574
to signatures in fingerprint arrays 578 and 580 associated with
cluster index 576. The cluster index 576 illustrates the details
forkey-3 and key-4 with the associated fingerprint arrays 578
and 580. The multimedia signature index 572 is shown with
the details of the signature array 574 that stores entries for
various multimedia signature arrays, such as entry 571 for a
unitof multimedia content, multimedia 1. The signature array
574 is a linked list of entries, such as entries 582, 584, 586,
that hold start and end pointers to different signature blocks in
the fingerprint arrays 578 and 580. For example, linked list
entry 582 holds start pointer 588 and end pointer 590, linked
list entry 584 holds the pointers 592 and 594 and linked list
entry 586 holds the start pointer 596 and end pointer 598.

FIG. 6A illustrates a process 625 for updating a cluster
index structure when fingerprints for a new unit of multime-
dia content are received in accordance with the present inven-
tion. While the search server is actively running multimedia
identification operations, the reference database might have
to be updated by adding fingerprints for new units of multi-
media content. Updating a reference database has two main
components. The first component is to update the cluster
index and the second component is to update the multimedia
signature index.

In FIG. 6A, at block 630, the signatures are read. Cluster
keys for all signatures are also read or calculated in the same
step. At block 632, the signatures are grouped according to the
cluster key and a loop is prepared in which the following steps
634-642 are repeated for each cluster and for each signature in
the cluster. Also, the number of new signatures falling in a
cluster is determined in the loop. Using that information at
decision block 632, it is determined if the current cluster size,
which is the size of the signature array associated with the
cluster key, is large enough to store the additional new signa-
tures. If enough space is available, the process 625 proceeds
to block 642 and new additional signatures are copied into the
signature array, for example, at the end following the last of
the original signatures. The associated metadata, such as the
number of fingerprint entries in this array associated with that
cluster index entry is also modified to reflect the changes
made. At decision block 644, it is determined whether each
cluster and each signature in the cluster has been processed. If
more processing is to be done, the loop returns to the decision
block 632.

At decision block 632, if enough space is not available to
store the new signatures the process 625 proceeds to the block
634. At block 634, a new array, sufficient to hold the original
number of signatures in that particular cluster as well as the
new additional signatures to be added into this cluster is
obtained from the system. Also at block 634, the original
signatures from the old array are copied into the newly
obtained array. At block 636, an exclusive write lock on the

US 9,058,355 Bl

15

newly established cluster index is obtained. At block 638, a
pointer from the cluster index array for this cluster entry is
modified to point to the new array. The old array is de-
allocated and returned to operating system. At block 640, the
exclusive write lock on the original array is released. At block
642, the new signatures are added to the newly established
array since it has enough space to store additional signatures.
The process 625 returns to the decision block 632. At decision
block 644, it is determined whether each cluster and for each
signature in the cluster has been processed. If more process-
ing is to be done, the loop returns to the decision block 632.

FIG. 6B illustrates an exemplary state diagram 600 show-
ing a cluster index structure before and after an update that
added fingerprints for a new unit of multimedia content in
accordance with the present invention. Before the update,
cluster array 604 associated with key 2 601 has space to store
four signatures. The first two entries 603 are from multimedia
1 and the last two spaces 605 are empty. When an update for
video 2 is received, a calculation determines that there are 10
signatures that need to be added to cluster signature array 604
with key 2 601. As the array size associated with cluster array
604 with key 2 601 is only four, it cannot accommodate all of
the new signatures. Hence an array of size greater than 12,
based on old signature count plus 10 new signature count, is
allocated. In the example, the new array size is 13. After the
update, the cluster array 612 has 13 spaces to store the signa-
tures. The first two spaces are of multimedia 1, the next 10
signatures 614 are the newly added multimedia signatures
and the last one space is empty. Rather than obtain an exclu-
sive write lock for each cluster separately, an exclusive write
lock can be obtained for a plurality of clusters that need a
reallocation because of insufficient space.

FIG. 6C illustrates a process 650 where such an exclusive
lock is obtained for all clusters that need more space for the
new signatures in accordance with the present invention. The
process 650 is similar to process 625. The process at block
654 makes similar calculations as in process and decision
block 632 in FIG. 6A. The only difference being instead of
performing these calculations and actually updating each
cluster separately, calculations for all the clusters are done
together in the process at block 654. Then, instead of acquir-
ing an exclusive lock for each cluster as shown in the process
636in FIG. 6A, at block 656 and block 658, an exclusive lock
is obtained for all clusters with insufficient size. An actual
update process described by blocks 660, 662, 664, and 666 of
FIG. 6C operates in a similar manner as described in blocks
636, 638, 640 and 642 of FIG. 6A. The process blocks 656-
666 are repeated if further processing of clusters is required.

A suitable method to update the multimedia signatures
index is similar to the process described in regard to FIGS. 5A
and 5B.

While the search server is actively running multimedia
identification operations, the reference database can be
updated by removing a multimedia content from it. Updating
the reference database by deleting fingerprints has two main
components. The first component is to update a cluster index
by removing signatures associated with the associated video.
The second component is to update the multimedia signature
index by removing the signatures associated with the associ-
ated video. FIG. 7A illustrates a process 720 for updating
cluster index structure to remove fingerprints associated a
multimedia content to be deleted in accordance with the
present invention. FIG. 7B illustrates an exemplary state dia-
gram 700 showing a primary index structure before and after
deleting fingerprints for a unit of multimedia content to be
deleted in accordance with the present invention.

30

40

45

50

16

In process 720 of FIG. 7A, a new request to delete a unit of
multimedia content from the reference database is received.
At block 722, a list of the cluster index entries that have at
least one signature associated with this unit of multimedia
content to be deleted is prepared. For example, if the original
signature data file is available, then the data file can be read
and a cluster index entry list can be created using the data that
was read. Also, a multimedia signature index structure can be
read to obtain the signature and cluster key data and from such
information a list of cluster index entries can be prepared. In
addition to the above approaches, metadata associated with
each cluster could be read to check for presence of the mul-
timedia content to be deleted. From this metadata informa-
tion, a list of cluster index entries can be prepared. Further, all
of'the cluster index entries and associated signatures may be
examined to prepare such a list.

At block 724, each cluster in this list that needs modifica-
tion is determined. At block 726, an exclusive read-write lock
is obtained for each cluster. Note that the exclusive write lock
can also be acquired for plurality of clusters that need the
modification at once. At block 728, a calculation is made for
start and end positions of all signatures blocks associated with
the unit of multimedia content. Thus, in the state diagram 700,
for the cluster associated with key 3 701, the start and end
positions of the signature block to be deleted is determined to
be entry 2 703 up to and including entry 11 705. At block 730,
the signatures to be deleted are removed and all of the signa-
tures that follow this block are shifted according to the space
of the signatures that are removed so as to coalesce the sig-
natures before and after the block to be deleted. Thus, after the
removal is completed, all active signatures are stored con-
secutively. In the state diagram 700, 10 signatures are
removed for the cluster associated with key 3 701 resulting in
areduced signature array 712. The signatures that are deleted
in this way can be moved to the end of signature array and
marked as deleted. This approach will enable the deleted
content to be rapidly readded into reference database if ever
needed. At block 730, metadata associated with the cluster is
also updated to reflect the new number of signatures and
multimedia contest present in this cluster.

As aresult of operations at block 730, at the block 732, the
signature array-size that holds the signature is optionally and
dynamically adjusted to free up some of the memory. In the
state diagram 700, the cluster array 712 with key 3 701 now
has only three active signatures after deleting 10 signatures
associated with the unit of multimedia content that was
deleted. The total size of array 704 before deletion was 14 out
of which only 3 signatures remain after deletion in the array
712. Hence the array size is dynamically readjusted by real-
locating the array or by returning the extra space for 10
signatures. After this operation, the size of array 712 becomes
4. At block 734, the exclusive write is released 734. If further
clusters need modification, the process 720 returns to block
726.

FIG. 7C llustrates a process 750 to delete fingerprints from
the multimedia signature index (MSI). The following actions
are taken to delete a video from the multimedia signature
index. At block 754, the multimedia signature index is tra-
versed to find the multimedia content entry to be deleted. At
block 758, an exclusive write lock is acquired to update the
multimedia signatures index. At block 760, the signature
array associated with this multimedia content is deleted and
the memory is returned to the operating system. Instead of
removing the multimedia entry, that entry in the multimedia
signature index can simply be marked as deleted or inactive.
At block 762, the exclusive write lock is released. FIG. 7D
illustrates an exemplary state diagram 770 that shows the

US 9,058,355 Bl

17

multimedia signature index structure before and after content
has been deleted from it according the present invention. The
multimedia signature index 772 holds a reference pointer to
the data structure 774 holding a signature array along with
metadata information for the multimedia id 2 771 before a
deletion operation deletes multimedia id 2. When a request to
delete multimedia 2 is processed, the multimedia 2 entry 775
in the multimedia signature index is marked as deleted, and
the pointer to the data structure that holds the metadata and
signature array is freed.

Some applications need the ability to add a unit of multi-
media content that is being currently produced, broadcasted,
streamed or displayed. For example, if a video is long then
these applications may require an ability to update a reference
database with parts of the videos before the end of the video.
Updates that are carried out in this fashion are called live
event updates. As an example, a 60 minute video may be
added into the reference database in three separate update
chunks or units each of 20 minutes. Note that multiple devices
may request updating the same video with different or over-
lapping parts of a video. The methods presented here do not
depend on a device or a number of devices requesting such an
update. FIGS. 8A, 8B, and 9, illustrate aspects of live event
updating of a reference database by adding new units of
multimedia content in real time.

In a first method for live event updates, each update part of
the multimedia content is treated as a separate unit of multi-
media content with a different video id. This case is similar to
normal multimedia content update described with regards to
FIGS. 6A and 6B.

In a second method for live event updates, each new update
can be processed by deleting previously added live event
updates for this multimedia content and then re-adding a
combined update of all of the previous live event update parts
and the new live event update part. In this case, deletion of
previous live event update parts is performed as described
with regard to FIGS. 7A-7D and then the combined update is
performed as described with regard to FIGS. 6A and 6B.

In a third method, each update is treated as a part of the
same unit of multimedia content. The cluster index and the
multimedia signature index are updated accordingly as
described with regard to FIG. 8A and FIG. 8B.

FIG. 8A illustrates an exemplary state diagram 800 show-
ing a cluster index structure before and after an intermediate
live event update for portions of multimedia content in accor-
dance with the present inventions. In FIG. 8A, each update
chunk follows a similar procedure of adding a new unit of
multimedia content in the reference database as described in
with regard to FIGS. 6A and 6B. However, a strict adherence
to the previous process 625 for such additions would make the
fingerprint block for live event updated multimedia content
non-continuous. After a first update, the signature array 804
for cluster with key 3 801 of the cluster index 802, has a two
signature chunk 803 for live event multimedia 1. After a
second live event update chunk is processed, the updated
signature array 808 has two chunks of signatures, those asso-
ciated with the chunk 803 and those associated with signature
chunk 805 for the live event multimedia 1 in memory. The two
signature chunks 803 and 805 are not contiguous. The process
to update the cluster index for a live event update is same as
the described in FIG. 6A.

FIG. 8B illustrates an exemplary state diagram 820 show-
ing a multimedia index structure before and after an interme-
diate live event update for a portion of multimedia content in
accordance with the present invention. A multimedia signa-
ture index stores all of the video signatures in one array.
Hence, to store additional signatures for a new live event

10

15

20

25

30

35

40

45

50

55

60

65

18

update chunk, a check is made for enough memory to store
additional fingerprints. If enough memory is present, then the
new fingerprints for the live event update chunk are added in
the fingerprint array associated with the multimedia content.
If sufficient memory is not present, more memory is first
obtained followed by copying old and new fingerprints into a
new array. Before the current update is processed, the signa-
ture array 824 associated with the live event multimedia 1 821
of'the multimedia signature index 822, has two signatures 823
from the first update. The size of the signature array 824 is
four. After the update is processed the signature array 828 has
three more signatures 833 from the second update along with
the two signatures 835 from the first update, making the total
number of signatures equal to five. Because there was not
enough space to store all of the five signatures in the original
signature array 824, a new signature array 828 allocation is
made to increase the array capacity to hold five or more
signatures. In this case, the allocation size was seven so two
signature spaces remain empty. Note that the chunk 2 signa-
ture-3 838 has a different cluster key than that of FP-1 836 and
FP-2 837 from chunk 2, hence in FIG. 8A in an exemplary
cluster index structure, the signatures associated with cluster
key 3 801 do not contain chunk 2, signature 3.

FIG. 8C illustrates an exemplary process 850 to update the
multimedia signature index for a live event update in accor-
dance with the present invention. When a new live event
update request is received, it is first read to receive all the new
signatures at step 852. Then an exclusive write lock is
obtained on the multimedia index entry to be updated in the
multimedia signature entry at step 854. A determination is
made at step 856 whether the received live event update chunk
is the first for the requested live update multimedia update. If
this is indeed a first chunk, then at step 858 a new storage
allocation large enough to store the new signatures is made.
The signatures from the chunk are stored in timestamp order
in this signature array at step 860 and at step 862 the exclusive
lock is released. At decision box 856, a determination is made
that the live event update request is not the first, then another
determination at decision box 864 is made about the size of
the already existing signature array. If the size of the existing
signature array is sufficient to store the new signatures in
addition to the existing ones, the process goes to step 860. If
the size is not sufficient, then a new signature array storage
allocation sufficient to hold old and new signatures is made at
step 866. The process then proceeds to step 860.

Note that the process of updating the cluster index and
multimedia signature index due to a new live event update
request does not depend on the source of the update request.
Thus, a first update chunk request of a live event may come
from a one source, a second update chunk request of a live
event may come from another source and a third update chunk
request may come from even different source. Thus, the
search server is oblivious to the source of these live event
update requests.

FIG. 9 illustrates an exemplary state diagram 900 showing
a cluster index structure before and after deleting a portion of
multimedia content that was previously added using a live
event update process in accordance with the present inven-
tion. The procedure of deleting a video that has been added to
a reference video as a part of the live event update is similar
that of deleting any other multimedia content as described
with regard to FIG. 7A. One difference is related to the
non-consecutive chunks of fingerprints in the cluster index
structure which may result from a live event update. In FI1G. 9,
the state diagram 900 shows an exemplary cluster index 902
with a first signature array 904 before a deletion update and a
second signatures array 914 after the deletion update. Before

US 9,058,355 Bl

19

the deletion update, the first signature array 904 contains two
chunks of the signatures 906 and 908. When these finger-
prints are removed, both the chunks 916 and 918 are first
marked for deletion in the signature array 914. Then, other
signatures in the signature array 914 are moved so as to
occupy the consecutive positions such that the altered signa-
tures array 924 is produced. Note that the first signature array
904 is resized after the deletion update resulting in the signa-
tures organization shown in the signature array 924.

A further aspect of live event updating concerns deleting
video from a multimedia signature index. If different live
event update chunks of multimedia content are added using
different content ids then deleting a content from the multi-
media signature index is the same as deleting corresponding
multiple contents, each deletion using the procedure
described with regard to FIG. 7C and state diagram 7D. In the
live event case, multiple units of content from the multimedia
signature index are deleted. However, if a video is live event
updated as described with regard to FIG. 8B occurs, then a
single content from the multimedia signatures index is
removed as described with regard to the state diagram of F1G.
7D as per the process described in FIG. 7C.

FIG. 10A illustrates an exemplary system 1000 having
multiple search servers 1002, 1002,, . . ., 1002, and a
distributed reference database in accordance with the present
invention. The distributed reference database comprises ref-
erence databases 1001,, 1001, . . ., 1001,, each on a corre-
sponding search server and each storing a portion of the
multimedia reference database according to a splitting policy
as described in more detail below. A search query dispatcher
1003 is utilized to assign queries to the appropriate portion of
the reference database according to the splitting policy. The
plurality of search servers may be grouped to form one or
more search clusters and a complete search system may con-
sist of multiple search clusters.

When a reference video database becomes too large to fit
on one search server, it can be divided across multiple search
servers 1002, 1002,, . . ., 1002,. A video identification
request, formatted as a search query, is dispatched from the
search query dispatcher 1003 to all of the search servers
1002,, 1002,, . . ., 1002, to search across the distributed
reference database. For example, a similarity search, as
described with regard to FIG. 2C, is done at each queried
search server for access to the split portion of the reference
multimedia database. Each candidate list resulting from the
similarity search is further processed, as described with
regard to FIG. 2D, to produce a list of top clips. As described
with regard to FI1G. 2E, for each of the clips in the top clips list
244, a set of reference signatures is accessed from the split
portion of the reference multimedia database based on the
multimedia identifier and any temporal and/or spatial infor-
mation. This set of reference signatures is compared against
the query signatures using a signature correlation procedure.
For each query signature, a score is derived and these scores
are combined for the entire set of query signatures to give an
overall score for a particular reference database clip. The
signature correlation procedure is repeated for all clips in the
top clips list, to produce a list of matching reference videos. A
separate result combiner 1008 process then collects results
from all individual search servers 1002, 1002,, . . ., 1002,
and generates final results after merging and evaluating the
combined results.

The distributed reference database can be arranged in many
ways. For example, the search system 1000 is configurable to
assign the selected portion of the reference database accord-
ing to a random splitting of the reference database. In this
arrangement, selected multimedia content of a plurality of

20

25

30

35

40

45

55

20

multimedia contents can be randomly assigned to one of the
search servers in the search cluster. Then, the signatures asso-
ciated with the selected portion of the reference database are
loaded in a local cluster index on the assigned search server as
well as in the multimedia signature index of that particular
search server.

In another method of arranging the distributed reference
database, the plurality of multimedia contents are split into
specified categories. Common examples of categories for
movies are—romance, thriller, animation, family, comedy,
and other identifiable categories. Multimedia content is cat-
egorized through examination of metadata that may accom-
pany the content. A movie category may be interpreted by a
multimedia content analysis, for example. Also, an unknown
category can be used when a specific category cannot be
determined. Each search server holds a reference database for
multimedia contents from a single or multiple categories.
This arrangement of the reference database is termed a cat-
egorical splitting of the reference database.

An opposite method of the categorical splitting of the ref-
erence database is a method for reverse categorical splitting.
In the reverse categorical splitting method, multimedia con-
tents within the same category are purposefully distributed
across as many different search servers as possible. The cat-
egorical splitting minimizes the information entropy of the
distributed reference database while the reverse categorical
splitting maximizes it.

The choice of the method to arrange a distributed reference
database may be based on a single server’s search algorithm.
Some search algorithms may perform better within a database
composed of similar content while other search algorithms
may perform better within a database composed of non simi-
lar contents. Further, for some search algorithms composition
of the reference database might not be a factor.

All normal updates or live event updates to a reference
database are assigned to a specific server as per the distributed
reference database splitting policy. FIG. 10B illustrates a
process 1025 to decide how to add multimedia content to a
distributed reference database in accordance with the present
invention. At block 1030, the process 1025 waits until a new
update request is received which may be a normal update or a
live event update request. At block 1032, a determination is
made whether the update request is a live event update
request. If the update request is not a live event update request
the process 1025 proceeds to block 1036. At block 1036, a
server is determined by the selected distributed reference
database splitting policy and the update is assigned to that
server. Returning to 1032, if the new update request is a live
event update request type, the process 1025 proceeds to block
1034. At block 1034 a determination is made whether this live
event update request is a first chunk for new multimedia
content. If this update request is not for a first live event
update chunk for new multimedia content, the process 1025
processed to block 1038. At block 1038, the same server to
which old live event update requests for this multimedia
content have been assigned is chosen and the new live event
update request is assigned to that server. Returning to the
block 1034, if a determination is made that this is the first live
event update chunk for new multimedia content, then the
process 1025 proceeds to block 1036. At block 1036, a server
is determined by selected distributed reference database split-
ting policy and the update is assigned to that server.

FIG. 11 illustrates an exemplary multi-cluster multimedia
identification system 1100 in accordance with the present
inventions. A set of search servers that together hold a refer-
ence multimedia content database is called as a search cluster.
The speed of the search system can be increased by replicat-

US 9,058,355 Bl

21

ing the search server clusters. Any request to modify the
reference database is forwarded across all the replicated
search clusters as shown in FIG. 11.

The multi-cluster multimedia identification system 1100
shows three search clusters 1102, 1104, and 1106 with a
multimedia search query distributor 1120 and a final result
unit 1124. Each cluster has its own result combiner 1110,
1112, 1114, respectively. These result combiners combine
results from each individual search machine inside each clus-
ter and then provide each cluster’s final result that may be
combined as a system final result in the final result unit 1124
for consumption by the query client. Every new multimedia
search request 1120 is distributed by the multimedia search
query distributor to one of the clusters, such as cluster 1106
while a reference database modification request 1122 is for-
warded to all of the clusters 1102, 1104, and 1106. With three
search clusters, three searches may operate in parallel. Also,
with multi-threaded search servers, the search servers are
operable to work separately on a plurality of search query
requests if so assigned.

Replicating the search clusters increases the number of
search queries a multi-cluster multimedia identification sys-
tem can handle within a given amount of time by a factor of N
where N is the number of replicated search clusters.

In many applications of a video identification system, most
of the video identification queries would match a very small
set of reference videos. For example, most people are inter-
ested in watching current TV programs, recent movie
releases, current sport matches. The complete reference data-
base may consist of tens of thousands of videos, however the
most sought video content might be just a fraction of it. In
such scenarios, a hierarchical search system can be config-
ured as illustrated in FIG. 12. F1G. 12 illustrates an exemplary
three tier hierarchical system 1200 for multimedia identifica-
tion in accordance with the present invention. The three tier
hierarchical system 1200 comprises a query dispatcher 1202,
a tier-1 system 1204 coupled to a first reference database
1203, a first tier function unit 1208, a tier-2 system 1210
coupled to a second reference database 1211, a second tier
function unit 1212, a tier-3 system 1216 coupled to a third
reference database 1217, and a third tier function unit 1218.

The most sought reference content is marked in the refer-
ence database contents and is loaded into a first tier, the tier-1
system 1204 of a multi-tier system. The most sought content
can be determined in many ways. For example, if the refer-
ence database consists of recent movies, then a movie ranking
report based on the weekly popularity of currently showing
movies could be used to mark the most popular movie content
in the reference database. The system can start without any
external information about the popularity of the reference
multimedia content and then build a popularity index for its
reference database contents by analyzing matched results for
recent search queries.

Multimedia identification search requests are dispatched
by the query dispatcher 1202 and enter this tier-1 system 1204
in which the multimedia identification query is matched
against only tier-1 content. If a match is not found, or if certain
criteria is not met, for example, confidence in the detected
match is less than a predetermined threshold or the length of
the match found is less than another predetermined threshold,
this multimedia identification query is sent on to the next tier,
the tier-2 system 1210, of the three tier hierarchical system
1200. This search system organization is generalized to mul-
tiple tiers in a hierarchical organization where the most popu-
lar content is organized in the tier-1 system 1204, some of the

10

15

20

25

30

35

40

45

50

55

60

65

22

next most popular content is organized into the tier-2 system
1210, some of the less popular content is organized into the
tier-3 system 1216 and so on.

In FIG. 12, the tier-1 system 1204 uses a first reference
database 1203 made up of the current most popular content.
The tier-2 system 1210 consists of other recent current con-
tent in second reference database 1211, while the tier-3 sys-
tem 1216 consists of the remaining content in a third refer-
ence database 1217. A multimedia identification query
dispatched by the query dispatcher 1202 is first handled by the
tier-1 system 1204. If the match is found as determined at first
tier function unit 1208, the results 1206 may be sent back to
the requesting client. If the match is not found, then the tier-2
system 1210 handles the dispatched query. Ifa match is found
in the second tier as determined at second tier function unit
1212, results 1214 may be returned to the client. Otherwise,
the last tier, the tier-3 system 1216 handles the query and
determines if there is a match or no match as determined at
third tier function unit 1218 and the results 1220 are returned
to the client.

The tier structure can also be considered as a way of per-
forming reference database caching. Similartoan L1 cachein
computer system, the tier 1 contains the references that are
most often accessed or matched to search queries.

The tier organization may lead to a smaller system cost due
to a number of advantages. For example, overall computing
load of the system may be reduced thus enabling fast content
identification. The tiered structure of the multi-cluster search
system delivers a lower number of queries to the second tier-2
system 1210 and an even lower number of queries of to the
last tier-3 system 1216. The multi-media identification speed
on a single search server is proportional to the reference
database size that it holds. As the tiered structure has reduced
the load on the second and third tiers compared to the firsttier,
the reference database size in the second tier-2 system 1210
and third tier-3 system 1216 can be increased and still main-
tain an adequate search speed required to answer every
incoming query to the overall multi-tier identification system.
Hence the tiered structure can also help in increasing the
distributed reference database size that can support a particu-
lar search speed.

The most sought content can be determined in multiple
ways. In a first exemplary approach to determine the most
sought content, the number of search queries that match
against a prespecified reference multimedia content over a
predefined time interval are counted as a match number by
keeping track of all search queries answered by the search
system. Then all the reference multimedia contents having a
match number greater than a prespecified threshold are
termed as the most sought videos. In another exemplary
approach, the probability of a random search query matching
to set of reference multimedia content is prespecified as a
probability threshold. Then, a set of reference content that
achieves or exceeds this probability threshold of matching a
random query is determined. This set of reference multimedia
content is then defined as the most sought content. The set of
most sought reference content can be determined using a
cumulative probability distribution function determined by
statistics maintained by the search system of the search
results, for example.

If the reference content is a set of movies, then movie
popularity ratings can be used to determine the top N popular
movies or top X % of popular movies. These top movies then
can be termed as the most sought content.

If the reference database is the TV shows, then similarly
TV show ratings could be used to determine the top N popular

US 9,058,355 Bl

23

shows ortop x % of popular shows. Using this information the
most sought TV shows can be determined.

Further, different tiers can have different number of clus-
ters, each with a different number of search controllers, to
handle correspondingly different query search loads and dis-
tributed reference database sizes. Thus, tier organization and
clusters of search servers are two independent concepts and
combinations of these two system configurations can resultin
an even more flexible and advantageous search system. For
example, if a tier-1 system is able to respond to most of the
search queries, then the following tiers would have much
smaller load. In such a case, to utilize the tiers efficiently, two
tier-1 clusters may share a single tier-2 system as illustrated in
FIG. 13.

FIG. 13 illustrates an exemplary two-tier system 1300 for a
multi-tier multi-cluster system that achieves reference data-
base scaling as well as performance scaling in accordance
with the present invention. The tier 1 search system 1304 is
comprised of two search clusters 1305 and 1306, each further
comprised of two search servers. Both the search clusters
1305 and 1306 host the same reference multimedia content.
Each search cluster 1305 and 1306 has its own result com-
biner 1307 and 1308, respectively. When a new search query
1301 is received in the search system 1300, the query dis-
tributor 1302 dispatches the search query to the tier 1 search
system 1304. The query distributor 1302 selects one of the
search clusters, such as search cluster 1306, out of the two
search clusters 1305 and 1306 in tier 1 and dispatches the
search request 1301. The selection of the search cluster may
be done in a pure random fashion, or in a round robin way, or
according to any other scheduling policy such as least loaded
cluster selection, or physically closest cluster selection. The
result combiner 1308 combines the results of various search
controllers in the search cluster 1306 and forwards the results
to another query distributer 1310. Query distributor 1310 and
query distributor 1302 may be implemented as a part of the
same process or may be separate processes.

Query distributor 1310 checks the results for the match. If
a match is found, then the results are forwarded to the result
monitor 1318 which in turn forwards the result to the search
client as final results 1320. If the query distributor 1310 does
not find a match, it dispatches the search query to tier 2 1312.
Tier 2 in this example consists of only one search cluster
hence the query distributor 1310 does not need to choose a
search cluster for this query in tier-2 1312. Also, in this
example, a search query is dispatched to all the search servers
in the tier 2. The result combiner 1315 collects the match
information from all the search servers and forwards the
result to the result monitor 1318 which in turn forwards the
results to the query client as final results 1320. The result
monitor 1318 stores the match results from tier 1 and tier 2,
and sends the combined processed results as final results 1320
to the query client.

Note that the reference databases in each tier need not be
static. Rather, they can be dynamic. Depending on a current
profile of queries, or current time, or some other parameter or
parameters, the set of reference content in the different tiers
can be changed or moved around. For example, some of
reference content from tier 1 thatis not so frequently accessed
and matched may get transferred to tier-2. To enable this
functionality for system 1300, the result monitor 1318 also
maintains statistics about the matches and which reference
multimedia contents are matched most often across large sets
of queries. Even though, it has not been shown explicitly in
FIG. 13, it is noted that as described before any updates or
delete operations on the reference multimedia content in tier
1 must be carried for both clusters 1305 and 1306.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some applications, an objective might be to first find a
matching reference video to a queried multimedia content
and then track the queried multimedia content as it progresses
against a matched set of multimedia contents with minimum
overhead and reduced latency. For example, consider an
application for the purpose of blocking advertisements on a
television set. A reference database is instantiated in the tele-
vision set and contains one or more television programs with-
out advertisements. Whenever an advertisement is displayed
on the television set, a multimedia identification query issued
in response to a user’s selection would return a “no match”.
By having the television set configured to track the program
being watched, whenever it detects deviation from the refer-
ence program being tracked it can conclude an advertisement
is present. The television set then can take various actions as
per the user preference. For example, the television set can
simply block the advertisement till the program resumes,
which the television set would know by tracking the dis-
played content on the television. Some other possible actions
that the television set can take include switching the channel,
going into picture-in-picture mode with another channel, and
reducing the audio volume.

FIG. 14A illustrates an exemplary process 1450 for multi-
media identification and multimedia tracking at a local client
in accordance with the present inventions. This process 1450
is executed by the client with a local multimedia track mode
function. Initially at step 1452, a first search query for search-
ing the currently displayed content on the client is made at the
local client and sent to a remote search server. The remote
server then returns the match results to the client. At decision
step 1454, a determination is made at the client whether the
result contains a matching reference video or not. If a match-
ing reference video is found, then the process continues to the
step 1456. Instead, if a matching reference video is not found
at decision step 1454, the process 1450 returns to step 1452
and performs a new search query for searching the currently
displayed content on the client at the remote server. The new
search query is done after some predetermined time delay to
reduce load on the remote search system.

With reference to the step 1456, as the client has found a
matching reference video, it then downloads signatures for
the matching reference video or signatures for the part of the
matching reference video around the match. The decision to
download full or part of the matching reference multimedia
signatures can be taken by the client or by the remote server.
Various factors can affect this decision, including but not
limited to the size of the matched reference content and the
probability of client continuing to display the same content
without changing the displayed program.

After downloading, the process 1450 builds a local search
database at step 1458 with the downloaded matching refer-
ence multimedia signatures in the reference database. At step
1460, the process 1450 then enters into a track mode. At step
1462, the process 1450 makes new track search requests to the
local search database to track the video. For example, the
television set searches for the content being displayed for the
past five seconds. The track search does not use the similarity
search phase of the normal search and instead uses a correla-
tion phase of the normal search. Hence, track search con-
sumes less computational resources and can be performed
faster.

At step 1464, a determination is made whether the results
returned match the query. If the track search at the local search
system return a match to the same reference, then the process
goes back to step 1462 where it can make a new track search
query. Instead, if at decision step 1464, a match is not found,
then at step 1466, a new full search query is made to the local

US 9,058,355 Bl

25

reference database. This full local search is more expensive
than the track search query in terms of the computational
resources needed. However, the full local search is faster than
a remote search query because the full search is performed
against a much smaller database. When the local full search
results are returned, at decision step 1468, a determination is
made whether a match to the same reference video is found.
Ifindeed a match has been found, then the tracking operation
is continued by returning to step 1462. Otherwise, it is con-
cluded that the local content has diverged from the reference
content and the local track method is abandoned at step 1470
and the process 1450 returns at the beginning step 1452.

FIG. 14B illustrates an exemplary state diagram 1400 of
various search queries done at a client that has an ability to
perform local multimedia track functions. In this exemplary
state diagram 1400, multimedia search queries 1402,
1404, . . ., 1430 are made by the client as the time progresses
to the right and shown with details of these search queries.
Specifically, for each search query, a brief description of the
search method, whether it is a remote search or local track
search or local full search, along with a description of results
and other actions are specified. At the beginning, the search
query 1402 is made at the remote search system. The remote
search system returns a no match result 1403 and hence the
next search query 1404 is made at the remote search system
again. The search query 1404 is answered with a match 1405,
the client downloads the signatures associated with the refer-
ence and builds a local search database and enters into a track
mode. The next search query 1406 is made to the local search
system as a local track search query which, for example,
results in successful match 1407. Hence, the process is
repeated for the search query 1408 with the match results
1409.

The next search query 1410 is first made as a local tack
search query and, for example, results in a no match finding.
Hence, since the local track search filed then the same query
is also made as a local full search query 1410. The local full
search query 1410 is made with the same signatures and, for
example matching results are found 1411. The same process
with similar results 1413 is repeated for a next query 1412.
For the next two queries 1414 and 1416, local track search
operations return positive results 1415, 1417, so the track
mode continues till that point in the time. However, for the
next search query 1418, neither the local track search query
nor the local full search query returns a positive match 1419.
Hence, it is concluded that the content being played locally
has diverged from the reference content. Further, the track
mode is abandoned and a remote search query 1418 is per-
formed. In this case, the remote system also does not find a
match 1419. The next query 1420 is made directly to the
remote search system, which returns a no match indication
1421 and the process is repeated for query 1422 with no
match result 1423. However, for the query 1424, the remote
search system finds the match 1425 and hence the client
downloads the signatures, updates the local search database
for this reference and enters into the track mode. The track
mode successfully continues for the next three queries 1426,
1428, 1430 with successful results 1427, 1429 and 1431.

Now consider a scenario where a video that is aired on a
television channel, a TV or any other device that can receive
the TV channel such as a set top box may fingerprint the
content aired on the television channel and may query the
search system to find a matching reference. However, if two
such querying devices are tuned to the same channel, there is
a considerable chance that both clients may generate the same
signatures and thus would generate exactly the same query. In
such case, if one query is searched by the search system after

10

15

20

25

30

35

40

45

50

55

60

65

26

another, and if somehow the search system can notice that
exact same query has been searched before, it can reduce the
computational overhead of the second search by remember-
ing the results of the first search query and returning those
results for the second query. This operation is termed as query
caching in an embodiment of the present invention.

In one aspect, the search system can cache the completed
query results. The results can be cached using a caching key
storage unit, such as a look-up table which may be organized
as a hash map data structure, for example. The keys for this
look-up table are generated from query signatures and search
results are stored as values of the look-up table. The search
system can employ a separate caching server or servers or the
caching functionality can be integrated at every search server.
FIG. 15A illustrates an exemplary search process 1550 oper-
ating on a search server with the query caching functionality
enabled on it. When a new query is received, at step 1552, the
search server calculates a hash key for the query using a
predetermined hashing function that operates on the query
signatures. The hashing function used in step 1552 can be a
check sum function such as an MD-5 key generation function.
The search server then looks for this hash key in the look-up
table at step 1554 that it has maintained to store the query
search results. For example, the look-up table may be orga-
nized to use a hash key as an address in the look-up table to
access search results. In an alternative configuration, a con-
tent addressable memory (CAM) may store hash keys and
associated search results. If the hash key is found in the
look-up table, the server returns the results from the look-up
table at step 1562. If the hash key is not found in the look-up
table at decision step 1554, then the server performs an actual
search against the reference multimedia database using the
query signatures at step 1556. At step 1558, the results of this
search are stored in the look-up table using the hash key
generated in step 1552 and the results are returned to the
query client at step 1560.

Note that instead of generating a single hash key for the
look-up table, multiple hash keys can be generated using
different set of query signatures. For example, a hash key can
be generated using signatures from a 5 second query. Then
three hash keys could be generated for a query that is 15
seconds long by using non-overlapping signatures blocks
each representing a duration of 5 seconds. While doing a
search even if a single hash key out of the three hash keys is
found to be in look-up table, a result associated with that key
is declared as a matching result. The look-up table is searched
and updated for all hash keys associated with every query.
Even more hash keys can be generated using overlapping
signature blocks and generating a hash key for each block of
signatures. This method is termed a generation of a sequence
of'hash keys.

Also, note that the caching need not be performed only at
the servers. The method of query caching involves generating
a unique hash key or sequences of hash keys from the signa-
tures. This can be performed at the querying client or any
other device. Only this unique key or sequences of keys need
to be queried to find cached query results. No actual search
needs to be performed if a cached result is found. For this
reason, this caching based querying for matching content can
be performed in various forms such as querying to a peer to
peer (P2P) network that is made of individual query clients,
querying to a content delivery network (CDN) or querying to
a separate caching server that only maintains such cached
results.

FIG. 15B illustrates a distributed search system process
1500 that incorporates centralized and distributed cache serv-
ers in accordance with the present invention. In FIG. 15B,

US 9,058,355 Bl

27

process 1500 begins at step 1502, by generating signatures at
a client for a unit of multimedia content to be identified. At
step 1504, hash keys are generated by the client using the
generated signatures. Also, at step 1504, the generated hash
keys are sent to a centralized query cache server or a distrib-
uted cache server on a network, such as the P2P network.

If the search has been forwarded to the centralized cache
server at step 1506, the centralized cache server checks for the
results using the hash keys. If the results are found, the results
are returned back to the client 1502. However, if the results
are not found at the centralized cache server, then the cache
server forwards the search request to the centralized search
system 1508 that performs the actual search using query
signatures. The main search system 1508 then informs the
query client 1502 of the actual search result. The main search
system 1508 also informs the cache server 1506 about the
results which in turn updates its look-up table by associating
the search results to the hash keys linked with this query
signature.

If the search at step 1504 is forwarded to a distributed
system to find the cached results, the distributed system
returns with a result.

If the client 1502 decides to be a part of distributed P2P
caching network, it then stores the obtained results into a
lookup table with the keys being the generated hash keys at
step 1504. At a later time, a different client may produce a
hash key that is the same as one of the hash keys produced by
this client 1502. If that new client queries using that hash key
to a distributed network in which the client 1502 has joined,
potentially the client 1502 can reply with the matching result.
Thus the P2P caching network can share some of the search
load of the main search system.

FIG. 15C illustrates a process 1518 executed at query cli-
ents for cache based multimedia content search in accordance
with the present inventions. At block 1520, the client gener-
ates signatures. At block 1522, a sequence of cache keys are
generated, that are much smaller in length compared to the
signatures generated at block 1520. At block 1524, the client
queries the centralized search system having a reference data-
base using the sequence of cache keys. At block 1525, the
query client receives the results of the cache key search from
the centralized search system. At block 1526, the query client
determines if the results contain a match in response to the
cache keys. If a match is found, the query client ends the
process 1518. If the match is not found in the results using the
cache keys at block 1526, the process 1518 proceeds to a
block 1530. At block 1530, the query client performs a mul-
timedia identification search query to the centralized search
system using the signatures generated at block 1520. At block
1532, the query client receives the results of the signature
search from the centralized search system and the query client
ends the process 1518.

Those of skill in the art will appreciate from the present
disclosure additional, alternative systems and methods for
actionable television event generation, based on television
program audio and video content fingerprinting, in accor-
dance with the disclosed principles of the present invention.
Thus, while particular embodiments and applications of the
present invention have been illustrated and described, it is to
be understood that the invention is not limited to the precise
construction and components disclosed herein and that vari-
ous modifications, changes and variations which will be
apparent to those of ordinary skill in the art may be made in
the arrangement, operation and details of the method and
apparatus of the present invention disclosed herein without
departing from the spirit and scope of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

28

We claim:

1. A method for query caching, the method comprising:

generating signatures of'a video content at a client, wherein

the signatures are split into blocks of signatures and each
block of signatures represents a non-overlapping seg-
ment of the video content;

generating a hash key from each block of signatures at the

client, wherein a sequence of hash keys are generated at
the client;

requesting a search of a remote reference database using

the sequence of hash keys;

searching the remote reference database for a match with

the sequence of hash keys to find search results for a
match with at least one hash key of the sequence of hash
keys;

sending to the client the search results linked with a match-

ing hash key, wherein the results were generated from a
previous full search of the remote reference database;
and

storing the search results in a cache at the client, wherein

the search results are accessible from the cache using the
at least one hash key.

2. The method of claim 1 further comprising:

using a predetermined hashing function on the signatures

to generate each cache key of the sequence of hash keys.

3. The method of claim 1 further comprising:

searching the remote reference database using the signa-

tures in response to not finding a match to at least one
hash key of the sequence of hash keys.

4. The method of claim 1, wherein the remote reference
database is configured with a hash key storage unit which is
searched with the sequence of hash keys.

5. The method of claim 4, wherein the hash key storage unit
is a look-up table storage unit.

6. The method of claim 1, wherein each block of signatures
represents a non-overlapping segment of predefined length of
the video content.

7. A method for query caching, the method comprising:

generating signatures of'a video content at a client, wherein

the signatures are split into blocks of signatures and each
block of signatures represents an overlapping segment
of the video content;

generating a hash key from each block of signatures at the

client, wherein a sequence of hash keys are generated at
the client;

requesting a search of a remote reference database using

the sequence of hash keys;

searching the remote reference database for a match with

the sequence of hash keys to find search results for a
match with at least one hash key of the sequence of hash
keys;

sending to the client the search results linked with a match-

ing hash key; and

storing the search results in a cache at the client, wherein

the search results are accessible from the cache using the
at least one hash key.

8. The method of claim 7 further comprising:

using a predetermined hashing function on the signatures

to generate each cache key of the sequence of hash keys.

9. The method of claim 7 further comprising:

searching the remote reference database using the signa-

tures in response to not finding a match to at least one
hash key of the sequence of hash keys.

10. The method of claim 7, wherein the remote reference
database is configured with a hash key storage unit which is
searched with the sequence of hash keys.

US 9,058,355 Bl

29

11. The method of claim 10, wherein the hash key storage
unit is a look-up table storage unit.

12. The method of claim 7, wherein each block of signa-
tures represents an overlapping segment of predefined length
of the video content.

13. The method of claim 7, wherein the results were gen-
erated from a previous full search of the remote reference
database.

14. A computer readable non-transitory medium storing a
computer program which causes a computer system to per-
form a method for query caching, the method comprising:

generating signatures ofa video content at a client, wherein

the signatures are split into blocks of signatures and each
block of signatures represents a non-overlapping seg-
ment of the video content;

generating a hash key from each block of signatures at the

client, wherein a sequence of hash keys are generated at
the client;

requesting a search of a remote reference database using

the sequence of hash keys;

searching the remote reference database for a match with

the sequence of hash keys to find search results for a
match with at least one hash key of the sequence of hash
keys;

sending to the client the search results linked with a match-

ing hash key; and

10

15

20

25

30

storing the search results in a cache at the client, wherein
the search results are accessible from the cache using the
at least one hash key.

15. The computer readable non-transitory medium method
of claim 14 further comprising:

using a predetermined hashing function on the signatures

to generate each cache key of the sequence of hash keys.

16. The computer readable non-transitory medium method
of claim 14 further comprising:

searching a remote reference database using the signatures

in response to not finding a match to at least one hash key
of the sequence of hash keys.

17. The computer readable non-transitory medium method
of claim 14, wherein the remote device is configured with a
hash key storage unit which is searched with the sequence of
hash keys.

18. The computer readable non-transitory medium method
of claim 17, wherein the hash key storage unit is a look-up
table storage unit.

19. The computer readable non-transitory medium method
of claim 14, wherein the results were generated from a pre-
vious full search of the remote device.

20. The computer readable non-transitory medium method
of claim 14, wherein the results were generated from a pre-
vious full search of a remote reference database in response to
a miss in a hash key storage unit.

#* #* #* #* #*

